scholarly journals Multi-response optimization of diesel engine operating parameters running with water-in-diesel emulsion fuel

2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 427-439 ◽  
Author(s):  
Suresh Vellaiyan ◽  
Koduvayur Amirthagadeswaran

Water-in-diesel emulsion fuel is a promising alternative diesel fuel, which has the potential to promote better performance and emission characteristics in an existing Diesel engine without engine modification and added cost. The key factor that has to be focused with the introduction of such fuel in existing Diesel engine is desired engine-operating conditions. The present study attempts to address the previous issue with two-phases of experiments. In the first phase, stable water-in-diesel emulsion fuels (5, 10, 15, and 20 water-in-diesel) are prepared and their stability period and physico-chemical properties are measured. In the second phase, experiments are conducted in a single cylinder, 4-stroke Diesel engine with pre-pared water-in-diesel emulsion fuel blends based on L16 orthogonal array suggested in Taguchi?s quality control concept to record the output responses (perormance and emission levels). Based on signal-to-noise ratio and grey relational analysis, optimal level of operating factors are determined to obtain better response and verified through confirmation experiments. A statistical analysis of variance is applied to measure the significance of individual operating parameters on overall engine performance. Results indicate that the emulsion fuel prepared by Sorbitan monolaurate surfactant at high stirrer speed endows with better emulsion stability and acceptable variation in physicochemical properties. Results of this study also reveal that the optimal parametric setting effectively improves the combustion, performance, and emission characteristics of Diesel engine.

Author(s):  
Ahmed I. EL-Seesy ◽  
Ali K. Abdel-Rahman ◽  
Hamdy Hassan ◽  
Shinichi Ookawara ◽  
Meshack Hawi

The current work presents the results of an experimental study that is conducted to investigate the effect of nanoparticles added to biodiesel-diesel fuel mixture. Nano-biodiesel-diesel mixture fuels were prepared by adding of multi-walled carbon nanotubes (MWCNTs). These nanoparticles were blended with biodiesel-diesel fuel in varying mass fractions using an ultrasonic stabilization. A diesel engine test rig was used to examine the effect of nanoparticles on engine performance and emission characteristics with a constant speed of 2500 rpm and different engine loads. The engine test results indicated that the biodiesel-diesel fuel blend slightly decreased the engine performance and increased its emission characteristics at all tested engine operating conditions. The use of nanoparticles was found to improve all engine performance parameters. Specifically, the maximum emission reduction was obtained at a dose level of 20 mg/l, where considerable emission reduction was observed; NOx by 14 %, CO by 30 %, and UHC by 34 %. Also, the best of both engine combustion characteristics and performance were reached at a dose level of 40–50 mg/l. Where the reduction in the brake specific fuel consumption was by 16 %, the increase in both the cylinder peak pressure Pmax, and maximum gross heat release rate dQg/dθmax. were 4 % and 1%, respectively. Finally, the recommended dose level to achieve a significant enhancement in all engine performance is 40 mg/l.


2014 ◽  
Vol 18 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Hasan Yamik

Biodiesel is an alternative fuel for diesel engines which doesn?t contain pollutants and sulfur; on the contrary it contains oxygen. In addition, both physical and chemical properties of sunflower oil methyl ester (SME) are identical to diesel fuel. Conversely, diesel and biodiesel fuels are widely used with some additives to reduce viscosity, increase the amount of cetane, and improve combustion efficiency. This study uses diesel fuel, SME and its mixture with aviation fuel JetA-1 which are widely used in the aviation industry. . Fuel mixtures were used in 1-cylinder, 4-stroke diesel engine under full load and variable engine speeds. In this experiment, engine performance and emission level are investigated. As a conclusion, as the JetA-1 ratio increases in the mixture, lower nitrogen oxide (NOx) emission is measured. Also, specific fuel consumption is lowered.


Sign in / Sign up

Export Citation Format

Share Document