scholarly journals Thin layer drying characteristics of curry leaves (Murraya koenigii) in an indirect solar dryer

2017 ◽  
Vol 21 (suppl. 2) ◽  
pp. 359-367 ◽  
Author(s):  
Selvaraj Vijayan ◽  
Vellingiri Thottipalayam ◽  
Anil Kumar
2018 ◽  
Vol 2 ◽  
pp. 53-58
Author(s):  
Arjun Ghimire ◽  
Nirajan Magar

Curry leaves (Murraya koenigii L.) are the sweet smelling leaves of small tree of Rutaceae family native to Southwest Asia. In this study, the effect of temperatures (50, 55 and 60°C) on the drying of curry leaves was investigated. The experimental data were fitted to six thin layer mathematical models (Newton, Page, Handerson and Pabis, logarithmic, two-term exponential and Midilli et al). The models were evaluated in terms of coefficient of determination (R2), chi square (χ2) and root mean square error (RMSE). The Midilli et al model was best fitted to the experimental data of all the models evaluated. The effective diffusivity was calculated using Fick's diffusion equation, and the value varied from 2.07×10-12 m2/s to 2.643×10-12 m2/s. The activation energy and the diffusivity constant were found to be 21.808 kJ/mol and 4.667×10-8 m2/s respectively.


2018 ◽  
Vol 6 (2) ◽  
pp. 552-565 ◽  
Author(s):  
Eunice Akello Mewa ◽  
Michael Wandayi Okoth ◽  
Catherine Nkirote Kunyanga ◽  
Musa Njue Rugiri

The objective of the present study was to determine the drying kinetics, moisture diffusivity and sensory quality of convective air dried beef. The effect of temperature of drying (30-60°C) and thickness of samples (2.5-10 mm) on the convective thin-layer drying kinetics of beefdried in a cabinet dryer was evaluated. Five semi-theoretical models were fit to the drying experimentaldata with the aim of predicting drying characteristics of beef and fitting quality of models determined using the standard error of estimate (SEE)and coefficient of determination (R2). Determination ofeffective moisture diffusivity (Deff) from the experimental drying datawas done and sensory quality of the optimized dried cooked and uncookedbeef samplesevaluated. Drying time and rate of drying increased with an increasing temperature but decreased with increased slice thickness. However, there was overlapping of drying curves at 40-50°C. Among the selected models, Page model gave the best prediction of beef drying characteristics. Effective moisture diffusivity (Deff) ranged between 4.2337 x 10-11 and 5.5899 x 10-10 m2/s, increasing with an increase in air temperature and beef slice thickness.Of all the sensory parameters evaluated, texture was the only attribute that gave significantly different (P > 0.05) scores between the cooked and uncooked dried beef samples.


1972 ◽  
Vol 15 (1) ◽  
pp. 0175-0176 ◽  
Author(s):  
I. J. Ross and G. M. White

Author(s):  
Toyosi Y Tunde-Akintunde

In this paper, the effect of sun and solar drying and pretreatment conditions (soaking in water; soaking in water and then blanching; blanching and then soaking) on the drying characteristics and kinetics of cassava chips were investigated. The drying time was shorter for samples pretreated by soaking only (SK) compared to the others. It was observed that pretreatment conditions and drying method significantly (P < 0.05) affected the drying rate. The drying for all experiments occurred in the falling rate period with no constant rate period. Four mathematical models were studied for the description thin layer drying characteristics of pretreated cassava chips. The models considered were the Henderson and Pabis, Newton, Logarithmic and the Page model. Comparing the correlation coefficients (R2), chi-square (c2) and root mean square error (RMSE) values of four models, it was observed that the highest values of R2 and lowest ?2 and RMSE were obtained using Page model. This shows that the Page model represents drying characteristics better than other models. The effective moisture diffusivity values were estimated from Fick’s diffusional model. These values obtained for solar dried samples were generally higher than those obtained for sun dried samples.


Sign in / Sign up

Export Citation Format

Share Document