Computer simulations of cosmic-ray air showers II. Showers initiated by heavy primary particles

Computer simulations have been made of large extensive air showers initiated by nuclei heavier than protons. The work forms part of a study of future experiments designed to identify the nature of the energetic primary particles. A model based upon data from nuclear emulsion experiments has been used to represent the break-up of the primary nuclei in collision with air nuclei. Differences in shower characteristics are predicted which are dependent upon the choice of model for the fragmentation of the primary nucleus and its energy. The major cause of fluctuations in the longitudinal development of showers produced by heavy particles is shown to be the pattern of the fragmentation of the incident nucleus. In the absence of a precise knowledge of the high-energy interaction, we have not identified any parameter in large showers which, if measurable and averaged over many showers, will reflect strongly the nature of the primary particle.

Detailed studies are made of the fluctuations of a wide range of parameters in computer-simulated extensive air showers in attempts to design experiments which will be sensitive to the mass number of primary cosmic rays of energy 10 17 -10 18 eV. The computational procedures depend heavily on the Monte Carlo technique and the model for the high-energy interactions of nucleons and pions is simple, involving pionization only. The magnitudes of the fluctuations of the electron size, muon sizes and depths of cascade maximum development are determined as a function of the energy and mass of the primary particle. The origin of the fluctuations is identified for showers initiated by primary protons of various energies from studies of the correlations between observable parameters of the showers and measures of the stage of longitudinal development of the electron cascade. The correlation between the different components of air showers and between these components and the longitudinal cascade development are evaluated for over 50 parameters in the showers. Measurable parameters depending little on the longitudinal development of a shower (and hence being good measures of the primary particle energy) and those depending strongly on the cascade development (being indications of the nature of the primary particle) are identified.


2015 ◽  
Vol 754-755 ◽  
pp. 859-864
Author(s):  
A.A. Al-Rubaiee ◽  
Uda Hashim ◽  
Mohd Khairuddin Md Arshad ◽  
A. Rahim Ruslinda ◽  
R.M. Ayub ◽  
...  

One of the characteristics of longitudinal development of extensive air showers is the number of charged particles and depth of shower maximum in extensive air showers as a function of primary energy, which is often used to reconstruct the elemental composition of primary cosmic rays. Studying of extensive air shower characteristics was performed by investigating the longitudinal development parameters depending on Heitler model for different primary particles. The simulation of the number of charged particles and depth of shower maximum (NandXmax) in extensive air showers of particle cascades was performed using AIRES code for SIBYLL hadronic model for different primary particles like electron, positron, gamma quanta and iron nuclei at the energy range 1014-1019eV. The comparison between the simulated longitudinal development ofNandXmaxusing SIBYLL hadronic model with two hadronic models (QGSJET99 ans SIBYLL16) has shown an opportunity for determination of cosmic ray cascade interactions in extensive air showers.


Computer simulations have been made of the average characteristics of extensive air showers initiated by primary protons in a wide range of energy. The simulations, which are perhaps unusual in the detailed information available for each shower, have been made as part of a design study for future experiments intended to identify the mass number of energetic primaries. The sensitivity of the data from our simulations to the detail of the adopted model for interactions has been investigated by incorporating the consequences of the results from recent accelerator and cosmic ray experiments. The simulations have been made by means of a variety of computational techniques; in most simulations a simple representation of the interaction of high-energy nucleons and pions has been employed which is characterized by accounting well for presently available experimental data on large air showers. We conclude that the treatment of showers, although derived with a simple model for interactions, may be usefully employed to study the fluctuations in air-shower development.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
A. A. Al-Rubaiee ◽  
Y. Al-Douri ◽  
U. Hashim

The simulation of the Cherenkov light lateral distribution function (LDF) in extensive air showers (EAS) was performed using CORSIKA code for configuration of Yakutsk EAS array at high energy range for different primary particles (p, Fe, and O2) and different zenith angles. Depending on Breit-Wigner function a parameterization of Cherenkov light LDF was reconstructed on the basis of this simulation as a function of primary energy. A comparison of the calculated Cherenkov light LDF with that measured on the Yakutsk EAS array gives the possibility of identification of the particle initiating the shower and determination of its energy in the knee region of the cosmic ray spectrum. The extrapolation of approximated Cherenkov light LDF for high energies was obtained for primary proton and iron nuclei.


1978 ◽  
Vol 10 (4) ◽  
pp. 730-735
Author(s):  
H. S. Green

The theoretical analyses of the extensive air showers developing from the cosmic radiation has its origins in the work of Carlson and Oppenheimer (1937) and Bhabha and Heitler (1937), at a time when it was thought that such showers were initiated by electrons. The realization that protons and other nuclei were the primary particles led to a reformulation of the theory by Heitler and Janossy (1949), Messel and Green (1952) and others, in which the production of energetic pions and the three-dimensional development of air showers were accounted for. But as the soft (electromagnetic) component of the cosmic radiation is the most prominent feature of air showers at sea level, there has been a sustained interest in the theory of this component. Most of the more recent work, such as that by Butcher and Messel (1960) and Thielheim and Zöllner (1972) has relied on computer simulation; but this method has disadvantages in terms of accuracy and presentation of results, especially where a simultaneous analysis of the development of air showers in terms of several physical variables is required. This is so for instance when the time of arrival is one of the variables. Moyal (1956) played an important part in the analytical formulation of a stochastic theory of cosmic ray showers, with time as an explicit variable, and it is essentially this approach which will be adopted in the following. The actual distribution of arrival times is cosmic ray showers, for which results are obtained, is of current experimental interest (McDonald, Clay and Prescott (1977)).


2018 ◽  
Vol 182 ◽  
pp. 02072 ◽  
Author(s):  
A. Leisos ◽  
T. Avgitas ◽  
G. Bourlis ◽  
G.K. Fanourakis ◽  
I. Gkialas ◽  
...  

The Hellenic Open University Cosmic Ray Telescope consists of three autonomous stations installed at the University Campus in the city of Patras. Each station comprises three large (≈ 1 m2) plastic scintillators and one or more Codalema type RF antennas detecting Extensive Air Showers (EAS), originating from primary particles with energy greater than 10 TeV. The operation and the performance of the Telescope is presented briefly, emphasising the educational activities foreseen in the framework of the HEllenic LYceum Cosmic Observatories Network (HELYCON).


2019 ◽  
Vol 216 ◽  
pp. 02004 ◽  
Author(s):  
Fabrizia Canfora

The mass composition of ultra-high-energy cosmic rays plays a key role in the understanding of the origins ofthese rare particles. A composition-sensitive observable is the atmospheric depth at which the air shower reaches the maximum number of particles (Xmax). The Auger Engineering Radio Array (AERA) detects the radio emission inthe 30-80 MHz frequency band from extensive air showers with energies larger than 1017 eV. It consists of more than 150 autonomous radio stations covering an area of about 17 km2. From the distribution of signals measured by the antennas, it is possible to estimate Xmax. In this contribution three independent methods for the estimation of Xmax will be presented.


1982 ◽  
Author(s):  
R. W. Ellsworth ◽  
T. K. Gaisser ◽  
Todor Stanev ◽  
G. B. Yodh

2005 ◽  
Vol 20 (29) ◽  
pp. 6869-6871 ◽  
Author(s):  
D. ARDOUIN ◽  
A. BELLETOILE ◽  
D. CHARRIER ◽  
R. DALLIER ◽  
L. DENIS ◽  
...  

We present the characteristics and performance of a demonstration experiment devoted to the observation of ultra high-energy cosmic ray extensive air showers using a radiodetection technique. In a first step, one antenna narrowed band filtered acting as trigger, with a 4σ threshold above sky background-level, was used to tag any radio transient in coincidence on the antenna array. Recently, the addition of 4 particle detectors has allowed us to observe cosmic ray events in coincidence with antennas.


Sign in / Sign up

Export Citation Format

Share Document