Semi-Markov Replacement Chains

1994 ◽  
Vol 26 (3) ◽  
pp. 728-755 ◽  
Author(s):  
Ioannis I. Gerontidis

We consider an absorbing semi-Markov chain for which each time absorption occurs there is a resetting of the chain according to some initial (replacement) distribution. The new process is a semi-Markov replacement chain and we study its properties in terms of those of the imbedded Markov replacement chain. A time-dependent version of the model is also defined and analysed asymptotically for two types of environmental behaviour, i.e. either convergent or cyclic. The results contribute to the control theory of semi-Markov chains and extend in a natural manner a wide variety of applied probability models. An application to the modelling of populations with semi-Markovian replacements is also presented.

1994 ◽  
Vol 26 (03) ◽  
pp. 728-755 ◽  
Author(s):  
Ioannis I. Gerontidis

We consider an absorbing semi-Markov chain for which each time absorption occurs there is a resetting of the chain according to some initial (replacement) distribution. The new process is a semi-Markov replacement chain and we study its properties in terms of those of the imbedded Markov replacement chain. A time-dependent version of the model is also defined and analysed asymptotically for two types of environmental behaviour, i.e. either convergent or cyclic. The results contribute to the control theory of semi-Markov chains and extend in a natural manner a wide variety of applied probability models. An application to the modelling of populations with semi-Markovian replacements is also presented.


1983 ◽  
Vol 20 (01) ◽  
pp. 191-196 ◽  
Author(s):  
R. L. Tweedie

We give conditions under which the stationary distribution π of a Markov chain admits moments of the general form ∫ f(x)π(dx), where f is a general function; specific examples include f(x) = xr and f(x) = esx . In general the time-dependent moments of the chain then converge to the stationary moments. We show that in special cases this convergence of moments occurs at a geometric rate. The results are applied to random walk on [0, ∞).


1980 ◽  
Vol 17 (1) ◽  
pp. 33-46 ◽  
Author(s):  
S. Tavaré

The connection between the age distribution of a discrete-time Markov chain and a certain time-reversed Markov chain is exhibited. A method for finding properties of age distributions follows simply from this approach. The results, which have application in several areas in applied probability, are illustrated by examples from population genetics.


1983 ◽  
Vol 20 (1) ◽  
pp. 191-196 ◽  
Author(s):  
R. L. Tweedie

We give conditions under which the stationary distributionπof a Markov chain admits moments of the general form ∫f(x)π(dx), wherefis a general function; specific examples includef(x) =xrandf(x) =esx. In general the time-dependent moments of the chain then converge to the stationary moments. We show that in special cases this convergence of moments occurs at a geometric rate. The results are applied to random walk on [0, ∞).


1980 ◽  
Vol 17 (01) ◽  
pp. 33-46 ◽  
Author(s):  
S. Tavaré

The connection between the age distribution of a discrete-time Markov chain and a certain time-reversed Markov chain is exhibited. A method for finding properties of age distributions follows simply from this approach. The results, which have application in several areas in applied probability, are illustrated by examples from population genetics.


1990 ◽  
Vol 27 (03) ◽  
pp. 545-556 ◽  
Author(s):  
S. Kalpazidou

The asymptotic behaviour of the sequence (𝒞 n (ω), wc,n (ω)/n), is studied where 𝒞 n (ω) is the class of all cycles c occurring along the trajectory ωof a recurrent strictly stationary Markov chain (ξ n ) until time n and wc,n (ω) is the number of occurrences of the cycle c until time n. The previous sequence of sample weighted classes converges almost surely to a class of directed weighted cycles (𝒞∞, ω c ) which represents uniquely the chain (ξ n ) as a circuit chain, and ω c is given a probabilistic interpretation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Nikolaos Halidias

Abstract In this note we study the probability and the mean time for absorption for discrete time Markov chains. In particular, we are interested in estimating the mean time for absorption when absorption is not certain and connect it with some other known results. Computing a suitable probability generating function, we are able to estimate the mean time for absorption when absorption is not certain giving some applications concerning the random walk. Furthermore, we investigate the probability for a Markov chain to reach a set A before reach B generalizing this result for a sequence of sets A 1 , A 2 , … , A k {A_{1},A_{2},\dots,A_{k}} .


2021 ◽  
Author(s):  
Andrea Marin ◽  
Carla Piazza ◽  
Sabina Rossi

AbstractIn this paper, we deal with the lumpability approach to cope with the state space explosion problem inherent to the computation of the stationary performance indices of large stochastic models. The lumpability method is based on a state aggregation technique and applies to Markov chains exhibiting some structural regularity. Moreover, it allows one to efficiently compute the exact values of the stationary performance indices when the model is actually lumpable. The notion of quasi-lumpability is based on the idea that a Markov chain can be altered by relatively small perturbations of the transition rates in such a way that the new resulting Markov chain is lumpable. In this case, only upper and lower bounds on the performance indices can be derived. Here, we introduce a novel notion of quasi-lumpability, named proportional lumpability, which extends the original definition of lumpability but, differently from the general definition of quasi-lumpability, it allows one to derive exact stationary performance indices for the original process. We then introduce the notion of proportional bisimilarity for the terms of the performance process algebra PEPA. Proportional bisimilarity induces a proportional lumpability on the underlying continuous-time Markov chains. Finally, we prove some compositionality results and show the applicability of our theory through examples.


2004 ◽  
Vol 2004 (8) ◽  
pp. 421-429 ◽  
Author(s):  
Souad Assoudou ◽  
Belkheir Essebbar

This note is concerned with Bayesian estimation of the transition probabilities of a binary Markov chain observed from heterogeneous individuals. The model is founded on the Jeffreys' prior which allows for transition probabilities to be correlated. The Bayesian estimator is approximated by means of Monte Carlo Markov chain (MCMC) techniques. The performance of the Bayesian estimates is illustrated by analyzing a small simulated data set.


Author(s):  
Peter L. Chesson

AbstractRandom transition probability matrices with stationary independent factors define “white noise” environment processes for Markov chains. Two examples are considered in detail. Such environment processes can be used to construct several Markov chains which are dependent, have the same transition probabilities and are jointly a Markov chain. Transition rates for such processes are evaluated. These results have application to the study of animal movements.


Sign in / Sign up

Export Citation Format

Share Document