Brownian Excursions and Parisian Barrier Options

1997 ◽  
Vol 29 (1) ◽  
pp. 165-184 ◽  
Author(s):  
Marc Chesney ◽  
Monique Jeanblanc-Picqué ◽  
Marc Yor

In this paper we study a new kind of option, called hereinafter a Parisian barrier option. This option is the following variant of the so-called barrier option: a down-and-out barrier option becomes worthless as soon as a barrier is reached, whereas a down-and-out Parisian barrier option is lost by the owner if the underlying asset reaches a prespecified level and remains constantly below this level for a time interval longer than a fixed number, called the window. Properties of durations of Brownian excursions play an essential role. We also study another kind of option, called here a cumulative Parisian option, which becomes worthless if the total time spent below a certain level is too long.

1997 ◽  
Vol 29 (01) ◽  
pp. 165-184 ◽  
Author(s):  
Marc Chesney ◽  
Monique Jeanblanc-Picqué ◽  
Marc Yor

In this paper we study a new kind of option, called hereinafter a Parisian barrier option. This option is the following variant of the so-called barrier option: a down-and-out barrier option becomes worthless as soon as a barrier is reached, whereas a down-and-out Parisian barrier option is lost by the owner if the underlying asset reaches a prespecified level and remains constantly below this level for a time interval longer than a fixed number, called the window. Properties of durations of Brownian excursions play an essential role. We also study another kind of option, called here a cumulative Parisian option, which becomes worthless if the total time spent below a certain level is too long.


2017 ◽  
Vol 20 (06) ◽  
pp. 1750042
Author(s):  
PINGJIN DENG ◽  
XIUFANG LI

Barrier options are one of the most popular exotic options. In this contribution, we propose a performance barrier option, which is a type of barrier option defined with the [Formula: see text]th period logarithm return rate process on an underlying asset over the time interval [Formula: see text], [Formula: see text]. We show that the price of this performance barrier option is determined by the joint distribution of a Slepian process and its maximum. Furthermore, we derive a tractable formula for this joint distribution and obtain explicit formulas for the up-out-call performance option and up-out-put performance option.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1271
Author(s):  
Marianito R. Rodrigo

A barrier option is an exotic path-dependent option contract where the right to buy or sell is activated or extinguished when the underlying asset reaches a certain barrier price during the lifetime of the contract. In this article we use a Mellin transform approach to derive exact pricing formulas for barrier options with general payoffs and exponential barriers on underlying assets that have jump-diffusion dynamics. With the same approach we also price barrier options on underlying futures contracts.


2009 ◽  
Vol 12 (07) ◽  
pp. 1055-1073 ◽  
Author(s):  
GEORGI K. MITOV ◽  
SVETLOZAR T. RACHEV ◽  
YOUNG SHIN KIM ◽  
FRANK J. FABOZZI

This paper examines the pricing of barrier options when the price of the underlying asset is modeled by a branching process in a random environment (BPRE). We derive an analytical formula for the price of an up-and-out call option, one form of a barrier option. Calibration of the model parameters is performed using market prices of standard call options. Our results show that the prices of barrier options that are priced with the BPRE model deviate significantly from those modeled assuming a lognormal process, despite the fact that for standard options, the corresponding differences between the two models are relatively small.


2018 ◽  
Vol 7 (2) ◽  
pp. 71
Author(s):  
LUH HENA TERECIA WISMAWAN PUTRI ◽  
KOMANG DHARMAWAN ◽  
I WAYAN SUMARJAYA

The purpose of this research is to compare the selling price of down and out barrier option when the prices are simulated by the Antithetic Variate Monte Carlo and the standar Monte Carlo. Barrier options are path dependent options and the payoff depend on whether the underlying asset price touched the barrier or not during the life of the option. In this research, we conducted simulations against the closing price of the shares of PT Adhi Karya using Standard Monte Carlo simulation and the Monte Carlo-Antithetic Variate simulation. After the simulation, we obtained that the option prices using Antithetic Variate produces a cheaper price than the standar one. We also found that the analytic solution has a smaller error on its confidence interval compare to the Monte Carlo Standar.


2019 ◽  
Vol 10 (1) ◽  
pp. 83-92
Author(s):  
S Sulastri ◽  
Lienda Novieyanti ◽  
Sukono Sukono

Abstract. This study aims to minimize the violation of the assumptions of determining price options by taking into account the actual market conditions in order to obtain the right price that will provide high profits for investors. The method used to determine the option price in this study is the Kamrad Ritchken trinomial with volatility values that will be modeled first using GARCH. The data used in this study is daily data (5 working days per week) from the closing price of the stock price of PT. Bank Rakyat Indonesia, Tbk (BBRI. Based on the results of the research, the best model is GARCH (1,1). For the call up barrier option, increase the strike price with the initial price and barrier which causes the option price to call up the barrier "in" and "out" decreases, on the contrary to the put barrier option, an increase in strike price with the initial price and a barrier that causes the put barrier option price to both put up-in and put up-out. initial and barrier which still causes the call down barrier option price both in and out decreases, on the contrary in the put down barrier option, increasing strike price with the initial price and barrier which causes the put down barrier option price to increase in and out.Keywords: Barrier Options, Trinomial, Kamrad Ritchken, Volatility, GARCH  Abstrak. Penelitian ini bertujuan untuk meminimalkan pelanggaran asumsi-asumsi penentuan harga opsi dengan memperhatikan kondisi pasar yang sebenarnya sehingga diperoleh harga yang tepat yang akan memberikan keuntungan tinggi bagi investor. Metode yang digunakan untuk menentukan harga opsi dalam penelitian ini adalah trinomial Kamrad Ritchken dengan nilai volatilitas yang akan dimodelkan terlebih dahulu dengan menggunakan GARCH. Data yang digunakan dalam penelitian ini adalah data harian (5 hari kerja per minggu) dari harga penutupan harga saham PT. Bank Rakyat Indonesia, Tbk (BBRI). Berdasarkan hasil penelitian diperoleh model yang paling baik adalah GARCH (1,1). Untuk opsi call up barrier, peningkatan strike price dengan harga awal dan barrier yang tetap menyebabkan harga opsi call up barrier baik "in" maupun "out" menurun, sebaliknya pada opsi put barrier, peningkatan strike price dengan harga awal dan barrier yang tetap menyebabkan harga opsi put barrier baik put up-in maupun put up-out meningkat. Sedangkan untuk opsi call barrier, peningkatan strike price dengan harga awal dan barrier yang tetap menyebabkan harga opsi call down barrier baik in maupun out menurun, sebaliknya pada opsi put down barrier, peningkatan strike price dengan harga awal dan barrier yang tetap menyebabkan harga opsi put down barrier baik in maupun out meningkat.Kata Kunci :  Opsi Barrier, Trinomial, Kamrad Ritchken, Volatilitas, GARCH


2011 ◽  
Vol 14 (07) ◽  
pp. 1091-1111 ◽  
Author(s):  
PETER CARR

We show that the payoff to barrier options can be replicated when the underlying price process is driven by the difference of two independent Poisson processes. The replicating strategy employs simple semi-static positions in co-terminal standard options. We note that classical dynamic replication using just the underlying asset and a riskless asset is not possible in this context. When the underlying of the barrier option has no carrying cost, we show that the same semi-static trading strategy continues to replicate even when the two jump arrival rates are generalized into positive even functions of distance to the barrier and when the clock speed is randomized into a positive continuous independent process. Since the even function and the positive process need no further specification, our replicating strategies are also semi-robust. Finally, we show that previous results obtained for continuous processes arise as limits of our analysis.


2014 ◽  
Vol 01 (01) ◽  
pp. 1450009 ◽  
Author(s):  
Peter Carr

The modern theory of option pricing rests on Itô calculus, which is a second-order calculus based on the quadratic variation of a stochastic process. One can instead develop a first-order stochastic calculus, which is based on the running minimum of a stochastic process, rather than its quadratic variation. We focus here on the analog of geometric Brownian motion (GBM) in this alternative stochastic calculus. The resulting stochastic process is a positive continuous martingale whose laws are easy to calculate. We show that this analog behaves locally like a GBM whenever its running minimum decreases, but behaves locally like an arithmetic Brownian motion otherwise. We provide closed form valuation formulas for vanilla and barrier options written on this process. We also develop a reflection principle for the process and use it to show how a barrier option on this process can be hedged by a static postion in vanilla options.


2014 ◽  
Vol 24 (2) ◽  
pp. 429-442 ◽  
Author(s):  
Krzysztof Rusek ◽  
Lucjan Janowski ◽  
Zdzisław Papir

Abstract A packet buffer limited to a fixed number of packets (regardless of their lengths) is considered. The buffer is described as a finite FIFO queuing system fed by a Markovian Arrival Process (MAP) with service times forming a Semi-Markov (SM) process (MAP /SM /1/b in Kendall’s notation). Such assumptions allow us to obtain new analytical results for the queuing characteristics of the buffer. In the paper, the following are considered: the time to fill the buffer, the local loss intensity, the loss ratio, and the total number of losses in a given time interval. Predictions of the proposed model are much closer to the trace-driven simulation results compared with the prediction of the MAP /G/1/b model.


2020 ◽  
Vol 14 (2) ◽  
pp. 119
Author(s):  
Marcelo González A. ◽  
Antonio Parisi F. ◽  
Arturo Rodríguez P.

Looback options are path dependent contingent claims whose payoffs depend on the extrema of the underlying asset price over a certain time interval. In this note we compare the performance of two Monte Carlo techniques to price lookback options, a crude Monte Carlo estimator and Antithetic variate estimator. We find that the Antithetic estimator performs better under a variety of performance measures.


Sign in / Sign up

Export Citation Format

Share Document