Dimensions of measures under orthogonal projections

1996 ◽  
Vol 28 (2) ◽  
pp. 344-345
Author(s):  
Martina Zähle

Let dimH, E be the Hausdorff dimension and dimP, E the packing dimension of the subset E of ℝn given by the unique exponent where the corresponding Hausdorff or packing measure of E jumps from infinity to zero.

1996 ◽  
Vol 28 (02) ◽  
pp. 344-345
Author(s):  
Martina Zähle

Let dimH, E be the Hausdorff dimension and dimP, E the packing dimension of the subset E of ℝ n given by the unique exponent where the corresponding Hausdorff or packing measure of E jumps from infinity to zero.


1996 ◽  
Vol 119 (4) ◽  
pp. 715-727 ◽  
Author(s):  
J. D. Howroyd

AbstractWe show that for arbitrary metric spaces X and Y the following dimension inequalities hold:where ‘dim’ denotes Hausdorff dimension and ‘Dim’ denotes packing dimension. The main idea of the proof is to use modified constructions of the Hausdorff and packing measure to deduce appropriate inequalities for the measure of X × Y.


Computability ◽  
2021 ◽  
pp. 1-28
Author(s):  
Neil Lutz ◽  
D.M. Stull

This paper investigates the algorithmic dimension spectra of lines in the Euclidean plane. Given any line L with slope a and vertical intercept b, the dimension spectrum sp ( L ) is the set of all effective Hausdorff dimensions of individual points on L. We draw on Kolmogorov complexity and geometrical arguments to show that if the effective Hausdorff dimension dim ( a , b ) is equal to the effective packing dimension Dim ( a , b ), then sp ( L ) contains a unit interval. We also show that, if the dimension dim ( a , b ) is at least one, then sp ( L ) is infinite. Together with previous work, this implies that the dimension spectrum of any line is infinite.


2006 ◽  
Vol 74 (3) ◽  
pp. 443-448 ◽  
Author(s):  
H.K. Baek

For a class of homogeneous Cantor sets, we find an explicit formula for their packing dimensions. We then turn our attention to the value of packing measures. The exact value of packing measure for homogeneous Cantor sets has not yet been calculated even though that of Hausdorff measures was evaluated by Qu, Rao and Su in (2001). We give a reasonable lower bound for the packing measures of homogeneous Cantor sets. Our results indicate that duality does not hold between Hausdorff and packing measures.


2018 ◽  
Vol 167 (02) ◽  
pp. 249-284 ◽  
Author(s):  
YANN BUGEAUD ◽  
YITWAH CHEUNG ◽  
NICOLAS CHEVALLIER

AbstractIn this paper we prove that the Hausdorff dimension of the set of (nondegenerate) singular two-dimensional vectors with uniform exponentμin (1/2, 1) is equal to 2(1 −μ) forμ⩾$\sqrt2/2$, whereas forμ<$\sqrt2/2$it is greater than 2(1 −μ) and at most equal to (3 − 2μ)(1 − μ)/(1 −μ+μ2). We also establish that this dimension tends to 4/3 (which is the dimension of the set of singular two-dimensional vectors) whenμtends to 1/2. These results improve upon previous estimates of R. Baker, joint work of the first author with M. Laurent, and unpublished work of M. Laurent. Moreover, we prove a lower bound for the packing dimension, which appears to be strictly greater than the Hausdorff dimension for μ ⩾ 0.565. . . .


1994 ◽  
Vol 115 (3) ◽  
pp. 437-450 ◽  
Author(s):  
Yuval Peres

AbstractWe show that the seif-affine sets considered by McMullen [15] and Bedford [2] have infinite packing measure in their packing dimension θ except when all non-empty rows of the initial pattern have the same number of rectangles. More precisely, the packing measure is infinite in the gauge tθ|logt|−1 and zero in the gauge tθ|logt|−1−δ for any δ > 0.


2005 ◽  
Vol 2005 (3) ◽  
pp. 239-254
Author(s):  
Józef Myjak

This paper contains a review of recent results concerning typical properties of dimensions of sets and dimensions of measures. In particular, we are interested in the Hausdorff dimension, box dimension, and packing dimension of sets and in the Hausdorff dimension, box dimension, correlation dimension, concentration dimension, and local dimension of measures.


Fractals ◽  
2017 ◽  
Vol 25 (01) ◽  
pp. 1730001 ◽  
Author(s):  
JUN WANG ◽  
KUI YAO

In this paper, we mainly discuss fractal dimensions of continuous functions with unbounded variation. First, we prove that Hausdorff dimension, Packing dimension and Modified Box-counting dimension of continuous functions containing one UV point are [Formula: see text]. The above conclusion still holds for continuous functions containing finite UV points. More generally, we show the result that Hausdorff dimension of continuous functions containing countable UV points is [Formula: see text] also. Finally, Box dimension of continuous functions containing countable UV points has been proved to be [Formula: see text] when [Formula: see text] is self-similar.


Filomat ◽  
2019 ◽  
Vol 33 (9) ◽  
pp. 2841-2859 ◽  
Author(s):  
Najmeddine Attia ◽  
Bilel Selmi

Given two probability measures ? and ? on Rn. We define the upper and lower relative multifractal box-dimensions of the measure ? with respect to the measure ? and investigate the relationship between the multifractal box-dimensions and the relative multifractal Hausdorff dimension, the relative multifractal pre-packing dimension. We also, calculate the relative multifractal spectrum and establish the validity of multifractal formalism. As an application, we study the behavior of projections of measures obeying to the relative multifractal formalism.


1992 ◽  
Vol 12 (1) ◽  
pp. 53-66 ◽  
Author(s):  
M. Denker ◽  
M. Urbański

AbstractLet h denote the Hausdorff dimension of the Julia set J(T) of a parabolic rational map T. In this paper we prove that (after normalisation) the h-conformal measure on J(T) equals the h-dimensional Hausdorff measure Hh on J(T), if h ≥ 1, and equals the h-dimensional packing measure Πh on J(T), if h ≤ 1. Moreover, if h < 1, then Hh = 0 and, if h > 1, then Πh(J(T)) = ∞.


Sign in / Sign up

Export Citation Format

Share Document