Meristic Variation in the Threespine Stickleback, Gasterosteus aculeatus, from Auke Lake, Alaska

Copeia ◽  
1976 ◽  
Vol 1976 (4) ◽  
pp. 811 ◽  
Author(s):  
Boyd Kynard ◽  
Kevin Curry

1973 ◽  
Vol 51 (5) ◽  
pp. 547-551 ◽  
Author(s):  
E. T. Garside ◽  
T. Hamor

Samples of threespine stickleback, Gasterosteus aculeatus L., collected from several areas of Newfoundland and Nova Scotia, and single sites from Iles de la Madeleine, Quebec, and eastern Lake Ontario, were analyzed for variation in numbers of anterior lateral plates and vertebrae. Counts of vertebrae varied from 28 to 35 and mean counts from 30.3 to 33.4, without being related to any obvious geographic gradients. Trunk and caudal segments of the vertebral column had about the same degree of variation. Counts of lateral plates exclusive of ossicles of the caudal keel ranged from 0 to 31 with a range of means from 1.6 to 24.7. Incomplete development of potential plate number and absence of caudal keels were observed in 1st-year individuals. These results are discussed in relation to information about this species complex from populations of Pacific North America and Europe.



1974 ◽  
Vol 31 (6) ◽  
pp. 1155-1157 ◽  
Author(s):  
Brian W. Coad ◽  
G. Power

Samples of threespine sticklebacks, Gasterosteus aculeatus, from two lakes and a river in the Matamek River system, Québec were analyzed for five meristic characters. Mean vertebral number differed for each area (range 32.00–32.85) but mean soft fin ray number showed little variation (dorsal rays 11.52–11.79, anal rays 8.68–8.76). Gill raker number was higher in the lake samples (21.25 and 21.80) than in the river sample (20.76). In Matamek Lake only semiarmatus plate morphs were found; in Bill Lake, semiarmatus and trachurus morphs in a ratio of 4:1 with about 10% intermediate; and in the lower Matamek River, semiarmatus and, at a low frequency, leiurus morphs.



Zoomorphology ◽  
2020 ◽  
Author(s):  
Harald Ahnelt ◽  
David Ramler ◽  
Maria Ø. Madsen ◽  
Lasse F. Jensen ◽  
Sonja Windhager

AbstractThe mechanosensory lateral line of fishes is a flow sensing system and supports a number of behaviors, e.g. prey detection, schooling or position holding in water currents. Differences in the neuromast pattern of this sensory system reflect adaptation to divergent ecological constraints. The threespine stickleback, Gasterosteus aculeatus, is known for its ecological plasticity resulting in three major ecotypes, a marine type, a migrating anadromous type and a resident freshwater type. We provide the first comparative study of the pattern of the head lateral line system of North Sea populations representing these three ecotypes including a brackish spawning population. We found no distinct difference in the pattern of the head lateral line system between the three ecotypes but significant differences in neuromast numbers. The anadromous and the brackish populations had distinctly less neuromasts than their freshwater and marine conspecifics. This difference in neuromast number between marine and anadromous threespine stickleback points to differences in swimming behavior. We also found sexual dimorphism in neuromast number with males having more neuromasts than females in the anadromous, brackish and the freshwater populations. But no such dimorphism occurred in the marine population. Our results suggest that the head lateral line of the three ecotypes is under divergent hydrodynamic constraints. Additionally, sexual dimorphism points to divergent niche partitioning of males and females in the anadromous and freshwater but not in the marine populations. Our findings imply careful sampling as an important prerequisite to discern especially between anadromous and marine threespine sticklebacks.





Author(s):  
L. Leveelahti ◽  
P. Leskinen ◽  
E.H. Leder ◽  
W. Waser ◽  
M. Nikinmaa


Genetics ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Juntao Hu ◽  
Sara J S Wuitchik ◽  
Tegan N Barry ◽  
Heather A Jamniczky ◽  
Sean M Rogers ◽  
...  

Abstract Epigenetic mechanisms underlying phenotypic change are hypothesized to contribute to population persistence and adaptation in the face of environmental change. To date, few studies have explored the heritability of intergenerationally stable methylation levels in natural populations, and little is known about the relative contribution of cis- and trans-regulatory changes to methylation variation. Here, we explore the heritability of DNA methylation, and conduct methylation quantitative trait loci (meQTLs) analysis to investigate the genetic architecture underlying methylation variation between marine and freshwater ecotypes of threespine stickleback (Gasterosteus aculeatus). We quantitatively measured genome-wide DNA methylation in fin tissue using reduced representation bisulfite sequencing of F1 and F2 crosses, and their marine and freshwater source populations. We identified cytosines (CpG sites) that exhibited stable methylation levels across generations. We found that additive genetic variance explained an average of 24–35% of the methylation variance, with a number of CpG sites possibly autonomous from genetic control. We also detected both cis- and trans-meQTLs, with only trans-meQTLs overlapping with previously identified genomic regions of high differentiation between marine and freshwater ecotypes. Finally, we identified the genetic architecture underlying two key CpG sites that were differentially methylated between ecotypes. These findings demonstrate a potential role for DNA methylation in facilitating adaptation to divergent environments and improve our understanding of the heritable basis of population epigenomic variation.





Parasitology ◽  
2010 ◽  
Vol 137 (11) ◽  
pp. 1681-1686 ◽  
Author(s):  
D. C. HEINS ◽  
E. L. BIRDEN ◽  
J. A. BAKER

SUMMARYAn analysis of the metrics of Schistocephalus solidus infection of the threespine stickleback, Gasterosteus aculeatus, in Walby Lake, Alaska, showed that an epizootic ended between 1996 and 1998 and another occurred between 1998 and 2003. The end of the first epizootic was associated with a crash in population size of the stickleback, which serves as the second intermediate host. The likely cause of the end of that epizootic is mass mortality of host fish over winter in 1996–1997. The deleterious impact of the parasite on host reproduction and increased host predation associated with parasitic manipulation of host behaviour and morphology to facilitate transmission might also have played a role, along with unknown environmental factors acting on heavily infected fish or fish in poor condition. The second epizootic was linked to relatively high levels of prevalence and mean intensity of infection, but parasite:host mass ratios were quite low at the peak and there were no apparent mass deaths of the host. A number of abiotic and biotic factors are likely to interact to contribute to the occurrence of epizootics in S. solidus, which appear to be unstable and variable. Epizootics appear to depend on particular and, at times, rare sets of circumstances.



1996 ◽  
Vol 199 (12) ◽  
pp. 2595-2604 ◽  
Author(s):  
T Law ◽  
R Blake

Fast-start escape performances for two species of threespine stickleback, Gasterosteus spp., were investigated using high-speed cinematography (400 Hz). The two fishes (not yet formally described, referred to here as benthic and limnetic) inhabit different niches within Paxton Lake, British Columbia, Canada, and are recent, morphologically distinct species. All escape responses observed for both species were double-bend C-type fast-starts. There were no significant differences between the species for any linear or angular parameter (pooled averages, both species: duration 0.048 s, distance 0.033 m, maximum velocity 1.10 m s-1, maximum acceleration 137 m s-2, maximum horizontal angular velocity 473.6 rad s-1 and maximum overall angular velocity 511.1 rad s-1). Benthics and limnetics have the greatest added mass (Ma) at 0.3 and 0.6 body lengths, respectively. The maximum Ma does not include the fins for benthics, but for limnetics the dorsal and anal fins contribute greatly to the maximum Ma. The deep, posteriorly placed fins of limnetics enable them to have a fast-start performance equivalent to that of the deeper-bodied benthics. Both the limnetic and benthic fishes have significantly higher escape fast-start velocities than their ancestral form, the anadromous threespine stickleback Gasterosteus aculeatus, suggesting that the high performance of the Paxton Lake sticklebacks is an evolutionarily derived trait. In this biomechanical study of functional morphology, we demonstrate that similar high fast-start performance can be achieved by different suites of morphological characteristics and suggest that predation might be the selective force for the high escape performance in these two fishes.



Sign in / Sign up

Export Citation Format

Share Document