Comparison of the fast-start performances of closely related, morphologically distinct threespine sticklebacks (Gasterosteus spp.)

1996 ◽  
Vol 199 (12) ◽  
pp. 2595-2604 ◽  
Author(s):  
T Law ◽  
R Blake

Fast-start escape performances for two species of threespine stickleback, Gasterosteus spp., were investigated using high-speed cinematography (400 Hz). The two fishes (not yet formally described, referred to here as benthic and limnetic) inhabit different niches within Paxton Lake, British Columbia, Canada, and are recent, morphologically distinct species. All escape responses observed for both species were double-bend C-type fast-starts. There were no significant differences between the species for any linear or angular parameter (pooled averages, both species: duration 0.048 s, distance 0.033 m, maximum velocity 1.10 m s-1, maximum acceleration 137 m s-2, maximum horizontal angular velocity 473.6 rad s-1 and maximum overall angular velocity 511.1 rad s-1). Benthics and limnetics have the greatest added mass (Ma) at 0.3 and 0.6 body lengths, respectively. The maximum Ma does not include the fins for benthics, but for limnetics the dorsal and anal fins contribute greatly to the maximum Ma. The deep, posteriorly placed fins of limnetics enable them to have a fast-start performance equivalent to that of the deeper-bodied benthics. Both the limnetic and benthic fishes have significantly higher escape fast-start velocities than their ancestral form, the anadromous threespine stickleback Gasterosteus aculeatus, suggesting that the high performance of the Paxton Lake sticklebacks is an evolutionarily derived trait. In this biomechanical study of functional morphology, we demonstrate that similar high fast-start performance can be achieved by different suites of morphological characteristics and suggest that predation might be the selective force for the high escape performance in these two fishes.

2002 ◽  
Vol 80 (2) ◽  
pp. 207-213 ◽  
Author(s):  
C A Bergstrom

Threespine stickleback (Gasterosteus aculeatus) have colonized freshwater habitats in circumboreal coastal regions, resulting in populations with variable but generally reduced lateral plate numbers compared with marine ancestors. Several abiotic and ecological factors associated with variation in lateral plate number among freshwater populations of G. aculeatus have been found, including large-scale climatic effects, variation in water-flow rates and levels of dissolved calcium, and the presence or absence of predatory fish. In addition, it has been proposed that plate reduction might be an adaptation for evading predator pursuit that enhances fast-start performance. If this hypothesis is correct, one would predict that fast-start performance would improve as lateral plate numbers decrease. I tested this prediction by comparing fast-start performance among stickleback with different numbers of lateral plates within two freshwater populations. Fast-starts of individual stickleback were video-recorded at 60 Hz and maximum velocity, maximum acceleration, displacement, and body curvature were calculated for each fish. Lateral plate number was significantly negatively correlated with velocity and displacement but not with acceleration or curvature. These results suggest that reduction in lateral plate number has the potential to be advantageous in some predation regimes because of its association with enhanced fast-start performance.


1991 ◽  
Vol 159 (1) ◽  
pp. 109-133 ◽  
Author(s):  
PETER C. WAINWRIGHT ◽  
DAVID M. KRAKLAU ◽  
ALBERT F. BENNETT

The kinematics of prey capture by the chamaeleonid lizard Chamaeleo oustaleti were studied using high-speed cinematography. Three feeding sequences from each of two individuals were analyzed for strike distances of 20 and 35 cm, at 30°C. Ten distances and angles were measured from sequential frames beginning approximately 0.5 s prior to tongue projection and continuing for about 1.0 s. Sixteen additional variables, documenting maximum excursions and the timing of events, were calculated from the kinematic profiles. Quantified descriptions of head, hyoid and tongue movements are presented. Previously unrecognized rapid protraction of the hyobranchial skeleton simultaneously with the onset of tongue projection was documented and it is proposed that this assists the accelerator muscle in powering tongue projection. Acceleration of the tongue occurred in about 20ms, reaching a maximum acceleration of 486 m s−2 and maximum velocity of 5.8m s−1 in 35 cm strikes. Deceleration of the tongue usually began within 5 ms before prey contract and the direction of tongue movement was reversed within 10 ms of prey contact. Retraction of the tongue, caused by shortening of the retractor muscles, reached a maximum velocity of 2.99 ms−1 and was complete 330 ms after prey contact. Projection distance influences many aspects of prey capture kinematics, particularly projection time, tongue retraction time and the extent of gape and head movements during tongue retraction, all of which are smaller in shorter feedings. Though several features of the chameleon strike have apparently been retained from lizards not capable of ballistic tongue projection, key differences are documented. Unlike members of a related family, the Agamidae, C. oustaleti uses no body lunge during prey capture, exhibits gape reduction during tongue projection and strongly depresses the head and jaws during tongue retraction. Note: Present address: Department of Biological Sciences, Florida State University, Tallahassee, FL 32306, USA.


1978 ◽  
Vol 35 (11) ◽  
pp. 1417-1422 ◽  
Author(s):  
P. W. Webb

Acceleration performance during and immediately following fast-starts was measured at 5, 10, 15, 20, and 25 °C for rainbow trout (Salmo gairdneri) of mean mass 23.5 g. Fast-start responses were initiated by an electric shock stimulus. Temperature had little effect on fast-start kinematics. Response latency and duration of propulsion strokes decreased with temperature. Latencies decreased from 23 ms at 5 °C to 6 ms at 25 °C. Times to complete the first two principal acceleration strokes in a fast-start decreased from 116 ms at 5 °C to 65 ms at 25 °C. Distance traveled in a given time increased with temperature. For an elapsed time of 100 ms, the distance traveled was 3.5 cm at 5 °C increasing to 11.3 cm at 25 °C. Velocity increased with time at each temperature to reach maximum values by the end of the third propulsive stroke and thereafter declining. Maximum velocity increased with temperature from 0.99 m∙s−1 at 5 °C to 1.71 m∙s−1 at 15 °C. Maximum velocity was independent of temperature from 15 to 25 °C. Similar trends were found for maximum acceleration rate which increased from 16 m∙s−2 at 5 °C to 41 m∙s−2 over the 15–25 °C range. Temperature effects on acceleration performance would alter the ability of fish to traverse short areas of high velocity flow, the effectiveness of predators, and vulnerability of prey fish. Key words: trout, acceleration, swimming, fast-start, temperature, predation, locomotion


1978 ◽  
Vol 74 (1) ◽  
pp. 211-226 ◽  
Author(s):  
P. W. WEBB

Fast-start kinematics and performance were determined for Etheostoma caeruleum, Cottus cognatus, Notropis cornutus, Lepomis macrochirus, Perca flavescens, Salmo gairdneri and a hybrid Esox sp. at an acclimation and test temperature of 15 °C. Normal three-stage kinematic patterns were observed for all species. Fast-start movements were similar in all species, except Lepomis, which had slightly higher amplitudes than expected for its length. The duration of kinematic stages was a major variable among the seven species but was a linear function of length. Acceleration rates were not functions of size. Maximum acceleration rates ranged from 22-7 to 39-5 m. s−2 with mean rates from 6.1 to 12.3 m.s−2 averaged to the completion of kinematic stage 2. Maximum velocity and distance covered in each fast-start stage varied among species but were related to length. Fast-start performance depended primarily on compromise between muscle mass as a percentage of body mass, and lateral body and fin profile. Optimal profiles provide large depth distant from the centre of mass to maximize thrust, and anterior depth enhancement to minimize recoil. The body form of Lepomis is considered optimal for multiple swimming modes.


1991 ◽  
Vol 69 (3) ◽  
pp. 578-582 ◽  
Author(s):  
A. Kurt Gamperl ◽  
Dan L. Schnurr ◽  
E. Don Stevens

Fast-start acceleration performance of rainbow trout (Salmo gairdneri) was measured after 9 weeks of sprint training (30°s duration, every 2nd day). Response latency and time required to complete the first two stages of a fast start were unaffected by the sprint-training protocol. Maximum acceleration (trained 1985 ± 176 (SE) cm/s2; control 1826 ± 144 cm/s2) and maximum velocity (trained 130 ± 7 cm/s; control 134 ± 14 cm/s) were also not significantly different following training. However, trained fish reached high rates of acceleration before control (untrained) fish. Thus, acceleration was higher in trained fish from 20 to 35 ms postshock. When fish are separated by start type, trained fish consistently had greater acceleration than control fish between 30 and 45 ms postshock. Alterations in fast-start performance due to sprint training may improve predator avoidance ability. Sprint training did not change critical swimming speed as measured using two separate protocols.


2013 ◽  
Vol 562-565 ◽  
pp. 296-301
Author(s):  
Rui Weng ◽  
Xiao Wei Liu ◽  
Hai Feng Zhang

Liquid-suspended rotor micro-mechanical gyroscope uses a high-speed rotating hollow rotor in response to the density of the liquid as the mass to do the angular velocity detection. In order to improve the liquid-suspended gyroscope's performance, this paper suggested a new high performance magnetic driving technology. In this technology, the driving performance is optimized by applying six-phase overlapped driving signal to the twelve driving coils of the stator. With this driving technology, the rotating speed of rotor in 3# industrial white oil can go up to 8700rpm.


1991 ◽  
Vol 156 (1) ◽  
pp. 187-205 ◽  
Author(s):  
PAOLO DOMENICI ◽  
ROBERT W. BLAKE

The kinematics of turning manoeuvres and the distance-time performance in escape responses of startled angelfish (Pterophyllum eimekei) are investigated employing high-speed cinematography (400 Hz). All escape responses observed are C-type fast-starts, in which the fish assumes a C shape at the end of the initial body contraction (stage 1). Kinematic analysis of the subsequent stage (stage 2) allows the response to be classified into two types: single bend (SB), in which the tail does not recoil completely after the formation of the C, and double bend (DB), in which it does. The two types of response have different total escape angles (measured from the subsequent positions of the centre of mass, SB 120.0°; DB 73.3°, P<0.005), different stage 2 turning angles (in the same direction as stage 1 for SB, 11.0°; in the direction opposite to stage 1 for DB, −21.9°: P<0.0005) and different maximum angular velocities in the direction opposite to the initial one (SB −8.08 rad s−1; DB −56.62 rad s−1: P<0.001). There are no significant differences in stage 1 kinematics for the two types of escape. Stage 1 turning angle is linearly correlated to stage 2 turning angle for DB only (P<0.01; r2=0.60) and to total escape angle for both types of response (P<0.0001; r2=0.80). Stage 1 duration is linearly correlated to stage 1 turning angle (P<0.0001; r2=0.83) and to total escape angle (P<0.0001; r2=0.72) for both types of escape. Distance-time performance is also different in the two response types, mainly because of differences in stage 2 (maximum velocity for SB 0.99 ms−1; maximum velocity for DB 1.53 ms−1: maximum acceleration for SB 34.1 ms−2; maximum acceleration for DB 74.7 ms−2: P<0.0001 in both cases). As a result, there are significant differences in the performance throughout the whole response (maximum velocity 1.02 ms−1 and 1.53 ms−1 for SB and DB fast-starts, respectively; maximum acceleration 63.2 ms−2 and 91.9 ms−2 for SB and DB fast-starts, respectively) as well as within a fixed time (0.03 s). Overall, higher distance-time performances associated with smaller angles of turn are found in DB than in SB responses. Comparison with previous studies reveals that angelfish have a good fast-start performance despite specializations for low-speed swimming. In addition, the angelfish turning radius (0.065±0.0063 L, where L is body length; mean±2 S.E.) is lower than that previously reported for any fish.


1999 ◽  
Vol 202 (11) ◽  
pp. 1465-1479 ◽  
Author(s):  
M.E. Hale

Fast-start locomotor behavior is important for escaping from predators and for capturing prey. To examine the effects of size and other aspects of developmental morphology on fast-start performance, the kinematics of the fast-start escape behavior were studied through early post-hatching development in three salmonid species: chinook salmon (Oncorhynchus tshawytscha), coho salmon (Oncorhynchus kisutch) and brown trout (Salmo trutta). These three species, while morphologically and developmentally similar, hatch and mature at different sizes (total length). Comparison of these species shows that some fast-start performance variables, including stage duration, maximum velocity and maximum acceleration, are highly dependent on ontogenetic state, while another, the overall distance traveled during stage 2, scales with total body length. Brown trout were studied from hatching into the juvenile development period. Aspects of fast-start performance peak at the end of yolk-sac absorption (the end of the eleutheroembryo phase) when the fish reaches the juvenile period. At this time, the durations of the fast-start stages are at their minima, and maximum velocity and maximum acceleration are at their highest levels relative to body length. Thus, escape behavior reaches its maximum size-specific performance at a relatively small size, just as the fish absorbs its yolk sac and begins to search for food. This peak in fast-start performance occurs during a life history period in which fast-start ability is likely to be particularly important for survival.


Sign in / Sign up

Export Citation Format

Share Document