Seed Banks, Fire Season, Safe Sites and Seedling Recruitment in Five Co-Occurring Banksia Species

1989 ◽  
Vol 77 (4) ◽  
pp. 1111 ◽  
Author(s):  
N. J. Enright ◽  
B. B. Lamont
2003 ◽  
Vol 81 (2) ◽  
pp. 171-182 ◽  
Author(s):  
Gunnar Austrheim ◽  
Ove Eriksson

Recruitment is critical for the maintenance of plant populations and community diversity, but sexual regeneration is considered to be infrequent in climatically harsh habitats such as subalpine grasslands. This study examines the importance of regeneration through seed for 16 sparse herb species, and we asked whether their populations are limited by safe sites or the availability of seeds. Seedling recruitment and winter survival were recorded after sowing in an experimental split-plot design in (i) pasture grazed by livestock, and (ii) exclosed grassland cultivated for annual mowing. In addition we examined the effect of disturbance and local seedbank recruitment. All species were able to recruit and survive the first winter in at least some of the experimental plots, although none were initially present. Recruitment mainly occurred in disturbed plots, and disturbed pasture plots had a significantly higher recruitment than disturbed exclosures for all species except Silene dioica. We further examined whether specific plant traits were related to variation in recruitment. Lower recruitment in the disturbed exclosure was associated with higher specific leaf area, leaf dry weight, and seed number. In contrast, seeds sown in disturbed pasture recruited more independently of species traits. The exception was a negative correlation between recruitment and leaf dry weight, and an unexpected negative correlation with seed weight. We suggest that recruitment differences among habitats mainly reflect lower humidity in the exclosure. Consequently, small stature plants with small specific leaf area should have the highest recruiting probability when exposed to drought. The almost exclusive recruitment on disturbed plots indicates a strong competitive effect on the target species in vegetated plots, and suggests that safe sites for regeneration through seed are rare in subalpine grasslands.Key words: colonization, herbs, plant abundance and distribution, disturbance, pastures, cultivated exclosures, sowing experiment.


2011 ◽  
Vol 8 (12) ◽  
pp. 3721-3732 ◽  
Author(s):  
J. M. Moreno ◽  
E. Zuazua ◽  
B. Pérez ◽  
B. Luna ◽  
A. Velasco ◽  
...  

Abstract. In fire-prone environments, the "event-dependent hypothesis" states that plant population changes are driven by the unique set of conditions of a fire (e.g. fire season, climate). Climate variability, in particular changes in rainfall patterns, can be most important for seeder species, since they regenerate after fire from seeds, and for Mediterranean shrublands, given the high yearly variability of rainfall in these ecosystems. Yet, the role of rainfall variability and its interaction with fire characteristics (e.g. fire season) on plant populations has received little attention. Here we investigated the changes in seedling emergence and recruitment of three seeder species (Cistus ladanifer, Erica umbellata and Rosmarinus officinalis) after fires lit during three different years and at two times (early and late) during the fire season. Three plots were burned at each season, for a total of 18 plots burned during the three years. After fire, emerged seedlings were tallied, tagged and monitored during three years (two in the last burning year). Rainfall during the study period was rather variable and, in some years, it was well below average. Postfire seedling emergence varied by a factor of 3 to 12, depending on the species and on the burning year. The bulk of seedling emergence occurred during the first year after fire; seedling recruitment at the end of the study period was tightly correlated with this early emergence. Emergence in Erica and Rosmarinus, but not in Cistus, was correlated with precipitation in the fall and winter immediately after fire, with Erica being the most sensitive to reduced rainfall. Fire season was generally neither an important factor in controlling emergence nor, in particular, recruitment. We discuss how projected changes in rainfall patterns with global warming could alter the balance of species in this shrubland, and could drive some species to near local extinction.


1996 ◽  
Vol 6 (2) ◽  
pp. 59 ◽  
Author(s):  
EN Daskalakou ◽  
CA Thanos

Pinus halepensis (Aleppo pine), is the dominant tree of a large fraction (26%) of the Greek coniferous forests; this species is an endemic pine of the Mediterranean Rim and well adapted to fire. Its regeneration is accomplished exclusively through seeds, thus its soil and canopy seed banks are of paramount importance for postfire resilience. Cone opening and seed dispersal were investigated in unburned forests of Attica (Greece) and it was found that Pinus halepensis trees maintain a significant percentage of the yearly cone crop (40-80%) closed, thus creating a persistent, canopy seed bank. Full viability of enclosed seeds was maintained for at least three years in canopy storage; moreover, preliminary results concerning the viability of seeds enclosed within the cones for four to more than 50 years showed a gradual reduction of both final percentage and rate of germination. Nevertheless, cones of up to 20 years of age contained a considerable fraction of germinable seeds. On the other hand, Aleppo pine forms only a short-lived (transient) soil seed bank; this bank was particularly abundant after a fire, as a result of the fire-induced cone opening. The germinable seed portion, although quite important prior to the start of the rainy season, was rapidly depleted, and at the end of the rainy season it was virtually absent in both burned and unburned forests. It is therefore concluded that postfire Aleppo pine seedling recruitment takes place almost exclusively during the first year after the fire and depends upon the germination of seeds in a transient soil bank which is produced by the postfire dispersal of pine seeds stored in the canopy seed bank.


2007 ◽  
Vol 37 (1) ◽  
pp. 103-115 ◽  
Author(s):  
Georges Kunstler ◽  
Joël Chadœuf ◽  
Etienne K Klein ◽  
Thomas Curt ◽  
Monique Bouchaud ◽  
...  

Encroachment of trees into low-productivity grasslands is a serious threat to grassland biodiversity throughout Europe. Although the rate of encroachment of trees into grassland is variable and poorly understood, it is thought to result from variation in tree seedling recruitment, which is limited mainly by the availability of safe sites and the dispersal distances of propagules. In this study, we established spatially explicit models of seedling recruitment for two major sub-Mediterranean trees: Quercus pubescens Willd. and Fagus sylvatica L. We quantified the spatial distribution of Q. pubescens and F. sylvatica seedlings up to 20 years old at three grassland sites. We also quantified the spatial distribution and size of mature trees and of the two dominant species of shrubs, Buxus sempervirens L. and Juniperus communis L., at each of the three sites. Ninety-eight percent of the regeneration took place under shrub canopy. Quercus pubescens seedlings showed higher seedling production per unit of canopy area and longer mean effective dispersal distances than did F. sylvatica seedlings. Quercus pubescens seedlings also had a large advantage over F. sylvatica seedlings for establishment in open areas. Juniperus shrubs were better safe sites for the establishment of Q. pubescens and F. sylvatica seedlings than were Buxus shrubs. We calculated indices of seedling dispersal limitation and safe site availability for recruitment for four dates. In the dolomitic Causse grasslands examined in this study, the availability of safe sites for germination and survival was far more important than seedling dispersal limitation for recruitment of both tree species.


2011 ◽  
Vol 21 (2) ◽  
pp. 103-116 ◽  
Author(s):  
Ana Salazar ◽  
Guillermo Goldstein ◽  
Augusto C. Franco ◽  
Fernando Miralles-Wilhelm

AbstractA large fraction of tree species forming persistent soil seed-banks and with dormant seeds are expected to be found in strongly seasonal ecosystems such as Neotropical savannas, where seedling recruitment could be highly variable. In the savannas of Central Brazil, we studied seed characteristics (type of dormancy, longevity and moisture content) of 14 representative woody species differing in seed dispersal season. We also studied the dynamics of soil seed-banks and similarity patterns in woody species composition among seed rain, soil seed-bank, seedling bank and standing vegetation along shallow topographic gradients that differ in canopy cover. Woody species composition of the soil seed-bank largely differed from the standing vegetation, the seed rain and the seedling bank species composition, suggesting low recruitment of woody species from the soil seed-bank. Seeds of the 14 woody species remained viable for less than 16 months in laboratory dry-storage conditions. Of those, most seeds dispersed in the dry season were dormant and exhibited low moisture content, while most seeds dispersed in the wet season were non-dormant and exhibited high moisture content. Longevity of these seeds dispersed in the dry and the wet seasons did not differ significantly. This study shows that both timing of seed dispersal and dormancy appear to control timing of seed germination and seedling recruitment of most Neotropical savanna woody species, which did not form persistent soil seed-banks. This study contributes to the understanding of tree/grass coexistence and tree density variations along topographic gradients in tropical savannas.


2011 ◽  
Vol 8 (3) ◽  
pp. 5761-5786 ◽  
Author(s):  
J. M. Moreno ◽  
E. Zuazua ◽  
B. Pérez ◽  
B. Luna ◽  
A. Velasco ◽  
...  

Abstract. In fire-prone environments, the "event-dependent hypothesis" states that plant population changes are driven by the unique set of conditions of a fire (e.g., fire season, climate). Climate variability, in particular changes in rainfall patterns, can be most important for seeder species, since they must regenerate after fire from seeds, and for Mediterranean shrublands, given the high yearly variability of rainfall in these ecosystems. Yet, the role of rainfall variability and its interaction with fire characteristics (e.g., fire season) on plant populations has received little attention. Here we investigated the changes in seedling emergence and recruitment of three seeder species (Cistus ladanifer, Erica umbellata and Rosmarinus officinalis) after fires lit during three different years and at two times during the fire season (early and late in the fire season) to account for potential changes in the soil seed-bank during the year. Three plots were burned at each season, for a total of 18 plots burned during the three years. After fire, emerged seedlings were tallied, tagged and monitored during three years (two the last burning year). Rainfall during the study period was rather variable, and in some years was well below average. Seedling emergence after fire varied by a factor of 3 to 10, depending on the species and on the burning year. The bulk of seedling emergence occurred in the first year after fire, and seedling recruitment at the end of the study period was tightly correlated with this early emergence. Seedling emergence in E umbellata and R officinalis, but not in C ladanifer, were correlated with precipitation in the fall and winter immediately after the fire, being E umbellata most sensitive to low rainfall. Fire season was generally not an important factor in controlling emergence and recruitment. We discuss how projected changes in rainfall patterns with global warming can alter the balance of species in this shrubland, and can drive some species to near local extinction.


2002 ◽  
Vol 42 (1) ◽  
pp. 43 ◽  
Author(s):  
F. F. Bebawi ◽  
S. D. Campbell

This study compared the efficacy of first and second fires applied during the early (August–September) and late dry season (October–November) on mortality of riparian (climbing) and subriparian (freestanding) infestations of rubber vine (Cryptostegia grandiflora R. Br.). The impact of fire treatments on germinable seed banks of monocotyledonous and dicotyledonous species was also determined. Individually, fire season, habitat type and number of fires significantly affected mortality of rubber vine plants. Late-season fires promoted higher mortality of rubber vine (96%) than early season fires (77%), with rubber vine in subriparian habitats more susceptible (90% mortality) than that growing in riparian areas (68% mortality). On average, fire mortality increased from 32% after the first fire up to 86% following 2 fires. Sensitivity of juvenile, mature, and old rubber vine plants to fire was in the order of mature>juvenile>old. Early fires significantly reduced seed banks of monocotyledonous plants, particularly in riparian habitats. Late fires significantly reduced seed banks of both dicotyledonous and monocotyledonous plants. No rubber vine seeds were detected in the germinable seed bank of either burnt or unburnt plots.


Sign in / Sign up

Export Citation Format

Share Document