Skolem functions and elementary embeddings

1977 ◽  
Vol 42 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Julia F. Knight

Let L be an elementary first order language. Let be an L-structure, and let φ be an L-formula with free variables u1, …, un, and υ. A Skolem function for φ on is an n-ary operation f on such that for all . If is an elementary substructure of , then an n-ary operation f on is said to preserve the elementary embedding of into if f(x)∈ for all x ∈ n, and (, f ∣n) ≺ (, f). Keisler asked the following question:Problem 1. If and are L-structures such that ≺ , and if φ (u, υ) is an L-formula (with appropriate free variables), must there be a Skolem function for φ on which preserves the elementary embedding?Payne [6] gave a counterexample in which the language L is uncountable. In [3], [5], the author announced the existence of an example in which L is countable but the structures and are uncountable. The construction of the example will be given in this paper. Keisler's problem is still open in case both the language and the structures are required to be countable. Positive results for some special cases are given in [4].The following variant of Keisler's question was brought to the author's attention by Peter Winkler:Problem 2. If L is a countable language, a countable L-structure, and φ(u, υ) an L-formula, must there be a Skolem function f for φ on such that for every countable elementary extension of , there is an extension of f which preserves the elementary embedding of into ?

2016 ◽  
Vol 81 (3) ◽  
pp. 951-971
Author(s):  
NADAV MEIR

AbstractWe say a structure ${\cal M}$ in a first-order language ${\cal L}$ is indivisible if for every coloring of its universe in two colors, there is a monochromatic substructure ${\cal M}\prime \subseteq {\cal M}$ such that ${\cal M}\prime \cong {\cal M}$. Additionally, we say that ${\cal M}$ is symmetrically indivisible if ${\cal M}\prime$ can be chosen to be symmetrically embedded in ${\cal M}$ (that is, every automorphism of ${\cal M}\prime$ can be extended to an automorphism of ${\cal M}$). Similarly, we say that ${\cal M}$ is elementarily indivisible if ${\cal M}\prime$ can be chosen to be an elementary substructure. We define new products of structures in a relational language. We use these products to give recipes for construction of elementarily indivisible structures which are not transitive and elementarily indivisible structures which are not symmetrically indivisible, answering two questions presented by A. Hasson, M. Kojman, and A. Onshuus.


2006 ◽  
Vol 71 (4) ◽  
pp. 1200-1222 ◽  
Author(s):  
D. Bellé ◽  
F. Parlamento

AbstractLet V be the cumulative set theoretic hierarchy, generated from the empty set by taking powers at successor stages and unions at limit stages and. following [2], let the primitive language of set theory be the first order language which contains binary symbols for equality and membership only. Despite the existence of ∀∀-formulae in the primitive language, with two free variables, which are satisfiable in ∀ but not by finite sets ([5]). and therefore of ∃∃∀∀ sentences of the same language, which are undecidable in ZFC without the Axiom of Infinity, truth in V for ∃*∀∀-sentences of the primitive language, is decidable ([1]). Completeness of ZF with respect to such sentences follows.


1983 ◽  
Vol 48 (1) ◽  
pp. 163-166
Author(s):  
Anand Pillay

A model M (of a countable first order language) is said to be finitely generated if it is prime over a finite set, namely if there is a finite tuple ā in M such that (M, ā) is a prime model of its own theory. Similarly, if A ⊂ M, then M is said to be finitely generated overA if there is finite ā in M such that M is prime over A ⋃ ā. (Note that if Th(M) has Skolem functions, then M being prime over A is equivalent to M being generated by A in the usual sense, that is, M is the closure of A under functions of the language.) We show here that if N is ā model of an ω-stable theory, M ≺ N, M is finitely generated, and N is finitely generated over M, then N is finitely generated. A corollary is that any countable model of an ω-stable theory is the union of an elementary chain of finitely generated models. Note again that all this is trivial if the theory has Skolem functions.The result here strengthens the results in [3], where we show the same thing but assuming in addition that the theory is either nonmultidimensional or with finite αT. However the proof in [3] for the case αT finite actually shows the following which does not assume ω-stability): Let A be atomic over a finite set, tp(ā / A) have finite Cantor-Bendixson rank, and B be atomic over A ⋃ ā. Then B is atomic over a finite set.


1973 ◽  
Vol 38 (4) ◽  
pp. 561-570 ◽  
Author(s):  
Julia F. Knight

In this paper, Cohen's forcing technique is applied to some problems in model theory. Forcing has been used as a model-theoretic technique by several people, in particular, by A. Robinson in a series of papers [1], [10], [11]. Here forcing will be used to expand a family of structures in such a way that weak second-order embeddings are preserved. The forcing situation resembles that in Solovay's proof that for any theorem φ of GB (Godel-Bernays set theory with a strong form of the axiom of choice), if φ does not mention classes, then it is already a theorem of ZFC. (See [3, p. 105] and [2, p. 77].)The first application of forcing here is to the problem (posed by Keisler) of when is it possible to add a Skolem function to a pair of structures, one of which is an elementary substructure of the other, in such a way that the elementary embedding is preserved.It is not always possible to find such a Skolem function. Payne [9] found an example involving countable structures with uncountably many relations. The author [4], [6] found an example involving uncountable structures with only two relations. The problem remains open in case the structures are required both to be countable and to have countable type. Forcing is used to obtain a positive result under some special conditions.


1994 ◽  
Vol 59 (4) ◽  
pp. 1410-1413
Author(s):  
C. J. Ash

The following fairly elementary result seems to raise possibilities for the study of countable models of a theory in a countable language. For the terminology of model theory we refer to [CK].Let L be a countable first-order language. Let L′ be the relational language having, for each formula φ of L and each sequence υ1,…,υn of variables including the free variables of φ, an n-ary relation symbol Pφ. For any L-structure and any formula Ψ(υ) of L, we define the Ψ-fraction of to be the L′-structure Ψ whose universe consists of those elements of satisfying Ψ(υ) and whose relations {Rφ}φϵL are defined by letting a1,…,an satisfy Rφ in Ψ if, and only if, a1,…, an satisfy φ in .An L-elementary class means the class of all L-structures satisfying each of some set of sentences of L. The countable part of an L-elementary class K means the class of all countable L-structures from K.Theorem. Let K be an L-elementary class and let Ψ(υ) be a formula of L. Then the class of countable Ψ-fractions of structures in K is the countable part of some L′-elementary class.Comment. By the downward Löwenheim-Skolem theorem, the countable Ψ-fractions of structures in K are the same as the Ψ-fractions of countable structures in K.Proof. We give a set Σ′ of L′-sentences whose countable models are exactly the countable Ψ-fractions of structures in K.


1984 ◽  
Vol 49 (2) ◽  
pp. 401-404 ◽  
Author(s):  
Robert Goldblatt

In this note it is shown that the property of orthomodularity of the lattice of orthoclosed subspaces of a pre-Hilbert space is not determined by any first-order properties of the relation ⊥ of orthogonality between vectors in . Implications for the study of quantum logic are discussed at the end of the paper.The key to this result is the following:Ifis a separable Hilbert space, andis an infinite-dimensional pre-Hilbert subspace of, then (, ⊥) and (, ⊥) are elementarily equivalent in the first-order languageL2of a single binary relation.Choosing to be a pre-Hilbert space whose lattice of orthoclosed subspaces is not orthomodular, we obtain our desired conclusion. In this regard we may note the demonstration by Amemiya and Araki [1] that orthomodularity of the lattice of orthoclosed subspaces is necessary and sufficient for a pre-Hilbert space to be metrically complete, and hence be a Hilbert space. Metric completeness being a notoriously nonelementary property, our result is only to be expected (note also the parallel with the elementary L2-equivalence of the natural order (Q, <) of the rationals and its metric completion to the reals (R, <)).To derive (1), something stronger is proved, viz. that (, ⊥) is an elementary substructure of (, ⊥).


1974 ◽  
Vol 39 (4) ◽  
pp. 717-731 ◽  
Author(s):  
C. Ward Henson

The basic setting of nonstandard analysis consists of a set-theoretical structure together with a map * from into another structure * of the same sort. The function * is taken to be an elementary embedding (in an appropriate sense) and is generally assumed to make * into an enlargement of [13]. The structures and * may be type-hierarchies as in [11] and [13] or they may be cumulative structures with ω levels as in [14]. The assumption that * is an enlargement of has been found to be the weakest hypothesis which allows for the familiar applications of nonstandard analysis in calculus, elementary topology, etc. Indeed, practice has shown that a smooth and useful theory can be achieved only by assuming also that * has some stronger properties such as the saturation properties first introduced in nonstandard analysis by Luxemburg [11].This paper concerns an entirely new family of properties, stronger than the saturation properties. For each cardinal number κ, * satisfies the κ-isomorphism property (as an enlargement of ) if the following condition holds:For each first order language L with fewer than κ nonlogical symbols, if and are elementarily equivalent structures for L whose domains, relations and functions are all internal (relative to * and ), then and are isomorphic.


1998 ◽  
Vol 4 (3) ◽  
pp. 303-337 ◽  
Author(s):  
Jaakko Hintikka

§1. The mission of axiomatic set theory. What is set theory needed for in the foundations of mathematics? Why cannot we transact whatever foundational business we have to transact in terms of our ordinary logic without resorting to set theory? There are many possible answers, but most of them are likely to be variations of the same theme. The core area of ordinary logic is by a fairly common consent the received first-order logic. Why cannot it take care of itself? What is it that it cannot do? A large part of every answer is probably that first-order logic cannot handle its own model theory and other metatheory. For instance, a first-order language does not allow the codification of the most important semantical concept, viz. the notion of truth, for that language in that language itself, as shown already in Tarski (1935). In view of such negative results it is generally thought that one of the most important missions of set theory is to provide the wherewithal for a model theory of logic. For instance Gregory H. Moore (1994, p. 635) asserts in his encyclopedia article “Logic and set theory” thatSet theory influenced logic, both through its semantics, by expanding the possible models of various theories and by the formal definition of a model; and through its syntax, by allowing for logical languages in which formulas can be infinite in length or in which the number of symbols is uncountable.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


1971 ◽  
Vol 36 (1) ◽  
pp. 129-140 ◽  
Author(s):  
G. Fuhrken ◽  
W. Taylor

A relational structure is called weakly atomic-compact if and only if every set Σ of atomic formulas (taken from the first-order language of the similarity type of augmented by a possibly uncountable set of additional variables as “unknowns”) is satisfiable in whenever every finite subset of Σ is so satisfiable. This notion (as well as some related ones which will be mentioned in §4) was introduced by J. Mycielski as a generalization to model theory of I. Kaplansky's notion of an algebraically compact Abelian group (cf. [5], [7], [1], [8]).


Sign in / Sign up

Export Citation Format

Share Document