Epistemic arithmetic is a conservative extension of intuitionistic arithmetic

1984 ◽  
Vol 49 (1) ◽  
pp. 192-203 ◽  
Author(s):  
Nicolas D. Goodman

Questions about the constructive or effective character of particular arguments arise in several areas of classical mathematics, such as in the theory of recursive functions and in numerical analysis. Some philosophers have advocated Lewis's S4 as the proper logic in which to formalize such epistemic notions. (The fundamental work on this is Hintikka [4].) Recently there have been studies of mathematical theories formalized with S4 as the underlying logic so that these epistemic notions can be expressed. (See Shapiro [7], Myhill [5], and Goodman [2]. The motivation for this work is discussed in Goodman [3].) The present paper is a contribution to the study of the simplest of these theories, namely first-order arithmetic as formalized in S4. Following Shapiro, we call this theory epistemic arithmetic (EA). More specifically, we show that EA is a conservative extension of Hey ting's arithmetic HA (ordinary first-order intuitionistic arithmetic). The question of whether EA is conservative over HA was raised but left open in Shapiro [7].The idea of our proof is as follows. We interpret EA in an infinitary propositional S4, pretty much as Tait, for example, interprets classical arithmetic in his infinitary classical propositional calculus in [8]. We then prove a cut-elimination theorem for this infinitary propositional S4. A suitable version of the cut-elimination theorem can be formalized in HA. For cut-free infinitary proofs, there is a reflection principle provable in HA. That is, we can prove in HA that if there is a cut-free proof of the interpretation of a sentence ϕ then ϕ is true. Combining these results shows that if the interpretation of ϕ is provable in EA, then ϕ is provable in HA.

1978 ◽  
Vol 43 (1) ◽  
pp. 23-44 ◽  
Author(s):  
Nicolas D. Goodman

In this paper we introduce a new notion of realizability for intuitionistic arithmetic in all finite types. The notion seems to us to capture some of the intuition underlying both the recursive realizability of Kjeene [5] and the semantics of Kripke [7]. After some preliminaries of a syntactic and recursion-theoretic character in §1, we motivate and define our notion of realizability in §2. In §3 we prove a soundness theorem, and in §4 we apply that theorem to obtain new information about provability in some extensions of intuitionistic arithmetic in all finite types. In §5 we consider a special case of our general notion and prove a kind of reflection theorem for it. Finally, in §6, we consider a formalized version of our realizability notion and use it to give a new proof of the conservative extension theorem discussed in Goodman and Myhill [4] and proved in our [3]. (Apparently, a form of this result is also proved in Mine [13]. We have not seen this paper, but are relying on [12].) As a corollary, we obtain the following somewhat strengthened result: Let Σ be any extension of first-order intuitionistic arithmetic (HA) formalized in the language of HA. Let Σω be the theory obtained from Σ by adding functionals of finite type with intuitionistic logic, intensional identity, and axioms of choice and dependent choice at all types. Then Σω is a conservative extension of Σ. An interesting example of this theorem is obtained by taking Σ to be classical first-order arithmetic.


2021 ◽  
pp. 268-311
Author(s):  
Paolo Mancosu ◽  
Sergio Galvan ◽  
Richard Zach

This chapter opens the part of the book that deals with ordinal proof theory. Here the systems of interest are not purely logical ones, but rather formalized versions of mathematical theories, and in particular the first-order version of classical arithmetic built on top of the sequent calculus. Classical arithmetic goes beyond pure logic in that it contains a number of specific axioms for, among other symbols, 0 and the successor function. In particular, it contains the rule of induction, which is the essential rule characterizing the natural numbers. Proving a cut-elimination theorem for this system is hopeless, but something analogous to the cut-elimination theorem can be obtained. Indeed, one can show that every proof of a sequent containing only atomic formulas can be transformed into a proof that only applies the cut rule to atomic formulas. Such proofs, which do not make use of the induction rule and which only concern sequents consisting of atomic formulas, are called simple. It is shown that simple proofs cannot be proofs of the empty sequent, i.e., of a contradiction. The process of transforming the original proof into a simple proof is quite involved and requires the successive elimination, among other things, of “complex” cuts and applications of the rules of induction. The chapter describes in some detail how this transformation works, working through a number of illustrative examples. However, the transformation on its own does not guarantee that the process will eventually terminate in a simple proof.


1986 ◽  
Vol 51 (3) ◽  
pp. 748-754 ◽  
Author(s):  
Andre Scedrov

Myhill [12] extended the ideas of Shapiro [15], and proposed a system of epistemic set theory IST (based on modal S4 logic) in which the meaning of the necessity operator is taken to be the intuitive provability, as formalized in the system itself. In this setting one works in classical logic, and yet it is possible to make distinctions usually associated with intuitionism, e.g. a constructive existential quantifier can be expressed as (∃x) □ …. This was first confirmed when Goodman [7] proved that Shapiro's epistemic first order arithmetic is conservative over intuitionistic first order arithmetic via an extension of Gödel's modal interpretation [6] of intuitionistic logic.Myhill showed that whenever a sentence □A ∨ □B is provable in IST, then A is provable in IST or B is provable in IST (the disjunction property), and that whenever a sentence ∃x.□A(x) is provable in IST, then so is A(t) for some closed term t (the existence property). He adapted the Friedman slash [4] to epistemic systems.Goodman [8] used Epistemic Replacement to formulate a ZF-like strengthening of IST, and proved that it was a conservative extension of ZF and that it had the disjunction and existence properties. It was then shown in [13] that a slight extension of Goodman's system with the Epistemic Foundation (ZFER, cf. §1) suffices to interpret intuitionistic ZF set theory with Replacement (ZFIR, [10]). This is obtained by extending Gödel's modal interpretation [6] of intuitionistic logic. ZFER still had the properties of Goodman's system mentioned above.


1984 ◽  
Vol 49 (2) ◽  
pp. 329-333 ◽  
Author(s):  
Branislav R. Boričić

This note is written in reply to López-Escobar's paper [L-E] where a “sequence” of intermediate propositional systems NLCn (n ≥ 1) and corresponding implicative propositional systems NLICn (n ≥ 1) is given. We will show that the “sequence” NLCn contains three different systems only. These are the classical propositional calculus NLC1, Dummett's system NLC2 and the system NLC3. Accordingly (see [C], [Hs2], [Hs3], [B 1], [B2], [Hs4], [L-E]), the problem posed in the paper [L-E] can be formulated as follows: is NLC3a conservative extension of NLIC3? Having in mind investigations of intermediate propositional calculi that give more general results of this type (see V. I. Homič [H1], [H2], C. G. McKay [Mc], T. Hosoi [Hs 1]), in this note, using a result of Homič (Theorem 2, [H1]), we will give a positive solution to this problem.NLICnand NLCn. If X and Y are propositional logical systems, by X ⊆ Y we mean that the set of all provable formulas of X is included in that of Y. And X = Y means that X ⊆ Y and Y ⊆ X. A(P1/B1, …, Pn/Bn) is the formula (or the sequent) obtained from the formula (or the sequent) A by substituting simultaneously B1, …, Bn for the distinct propositional variables P1, …, Pn in A.Let Cn(n ≥ 1) be the string of the following sequents:Having in mind that the calculi of sequents can be understood as meta-calculi for the deducibility relation in the corresponding systems of natural deduction (see [P]), the systems of natural deductions NLCn and NLICn (n ≥ 1), introduced in [L-E], can be identified with the calculi of sequents obtained by adding the sequents Cn as axioms to a sequential formulation of the Heyting propositional calculus and to a system of positive implication, respectively (see [C], [Ch], [K], [P]).


1987 ◽  
Vol 19 (55) ◽  
pp. 19-37
Author(s):  
Leila Z. Puga ◽  
Newton C.A. Da Costa

Our starting point, in this basically expository paper, is the study of a classical system of deontic propositional logic, classical in the sense that it constitutes an extension of the classical propositional calculus. It is noted, then, that the system excludes ab initio the possibility of the existence of real moral dilemmas (contradictory obligations and prohibitions), and also can not cope smoothly with the so-called prima facie moral dilemmas. So, we develop a non-classical, paraconsistent system of propositional deontic logic which is compatible with such dilemmas, real or prima facie. In our paraconsistent system one can handle them neatly, in particular one can directly investigate their force, operational meaning, and the most important consequences of their acceptance as not uncommon moral facts. Of course, we are conscious that other procedures for dealing with them are at hand, for example by the weakening of the specific deontic axioms. It is not argued that our procedure is the best, at least as regards the present state of the issue. We think only that owing, among other reasons, to the circumstance that the basic ethical concepts are intrinsically vague, it seems quite difficult to get rid of moral dilemmas and of moral deadlocks in general. Apparently this speaks in favour of a paraconsistent approach to ethics. At any rate, a final appraisal of the possible solutions to the problem of dilemmas and deadlocks, if there is one, constitutes a matter of ethical theory and not only of logic. On the other hand, the paraconsistency stance looks likely to be relevant also in the field of legal logic. It is shown, in outline, that the systems considered are sound and complete, relative to a natural semantics. All results of this paper can be extended to first-order and to higher-order logics. Such extensions give rise to the question of the transparency (or oppacity) of the deontic contexts. As we shall argue in forthcoming articles, they normally are transparent. [L.Z.P., N.C.A. da C.] (PDF en portugués)


2000 ◽  
Vol 65 (3) ◽  
pp. 1223-1240 ◽  
Author(s):  
Wolfgang Burr

AbstractWe define classes Φn of formulae of first-order arithmetic with the following properties:(i) Every φ ϵ Φn is classically equivalent to a Πn-formula (n ≠ 1, Φ1 := Σ1).(ii) (iii) IΠn and iΦn (i.e., Heyting arithmetic with induction schema restricted to Φn-formulae) prove the same Π2-formulae.We further generalize a result by Visser and Wehmeier. namely that prenex induction within intuitionistic arithmetic is rather weak: After closing Φn both under existential and universal quantification (we call these classes Θn) the corresponding theories iΘn still prove the same Π2-formulae. In a second part we consider iΔ0 plus collection-principles. We show that both the provably recursive functions and the provably total functions of are polynomially bounded. Furthermore we show that the contrapositive of the collection-schema gives rise to instances of the law of excluded middle and hence .


1974 ◽  
Vol 39 (3) ◽  
pp. 584-596 ◽  
Author(s):  
A. S. Troelstra

The principal aim of this paper is to establish a theorem stating, roughly, that the addition of the fan theorem and the. continuity schema to an intuitionistic system of elementary analysis results in a conservative extension with respect to arithmetical statements.The result implies that the consistency of first order arithmetic cannot be proved by use of the fan theorem, in addition to standard elementary methods—although it was the opposite assumption which led Gentzen to withdraw the first version of his consistency proof for arithmetic (see [B]).We must presuppose acquaintance with notation and principal results of [K, T], and with §1.6, Chapter II, and Chapter III, §4-6 of [T1]. In one respect we shall deviate from the notation in [K, T]: We shall use (n)x (instead of g(n, x)) to indicate the xth component of the sequence coded by n, if x < lth(n), 0 otherwise.We also introduce abbreviations n ≤* m, a ≤ b which will be used frequently below:


Author(s):  
A. Salibra ◽  
A. Bucciarelli ◽  
A. Ledda ◽  
F. Paoli

Abstract We introduce Boolean-like algebras of dimension n ($$n{\mathrm {BA}}$$ n BA s) having n constants $${{{\mathsf {e}}}}_1,\ldots ,{{{\mathsf {e}}}}_n$$ e 1 , … , e n , and an $$(n+1)$$ ( n + 1 ) -ary operation q (a “generalised if-then-else”) that induces a decomposition of the algebra into n factors through the so-called n-central elements. Varieties of $$n{\mathrm {BA}}$$ n BA s share many remarkable properties with the variety of Boolean algebras and with primal varieties. The $$n{\mathrm {BA}}$$ n BA s provide the algebraic framework for generalising the classical propositional calculus to the case of n–perfectly symmetric–truth-values. Every finite-valued tabular logic can be embedded into such a n-valued propositional logic, $$n{\mathrm {CL}}$$ n CL , and this embedding preserves validity. We define a confluent and terminating first-order rewriting system for deciding validity in $$n{\mathrm {CL}}$$ n CL , and, via the embeddings, in all the finite tabular logics.


1976 ◽  
Vol 41 (3) ◽  
pp. 574-582
Author(s):  
Nicolas D. Goodman

In [2] we described an arithmetic theory of constructions (ATC) and showed that first-order intuitionistic arithmetic (HA) could be interpreted in it. In [3] we went on to show that the interpretation of HA in ATC is faithful. The purpose of the present paper is to apply these ideas to intuitionistic arithmetic in all finite types. Tait has shown [6] that a conservative extension of HA is obtained by adding the Gödel functionals with intuitionistic logic and intensional identity in all finite types. Below we show that this extension remains conservative on the addition of certain axioms of choice which are evident on the intended interpretation of the intuitionistic logical connectives. This theorem (Corollary 6.2 below) was first obtained by a more complicated argument in our dissertation [1]. Some of its implications are discussed in Goodman and Myhill [4].We assume that the reader is familiar with [2] and [3].


1986 ◽  
Vol 51 (2) ◽  
pp. 387-392 ◽  
Author(s):  
Nicolas D. Goodman

Epistemic arithmetic—that is, first-order arithmetic with S4 as the underlying logic—was introduced by Shapiro in [7] and independently by Reinhardt in [6]. Shapiro showed that intuitionistic first-order arithmetic HA can be embedded in epistemic arithmetic EA. Moreover he showed that some of the basic proof-theoretic facts about HA, such as the existence and disjunction properties, can be extended to EA. In [3] we showed that the interpretation of HA in EA is faithful. (G.E. Mine has independently also proved this theorem.) Finally, in [2], Flagg showed that a suitable form of Church's thesis is consistent with EA. (Carlson [1] has announced another proof of this result.) Flagg's argument involves an ingenious realizability notion for EA which, as it stands, is not very perspicuous. The purpose of the present paper is to give a more transparent treatment of Flagg realizability. We obtain a new version of Flagg's proof of the consistency of Church's thesis with EA. Our main new result is that, in a sense to be made precise below, Flagg realizability coincides on HA embedded in EA with Kleene's 1945 realizability (e.g. see [5, pp. 501–516]). Thus it turns out once more that methods and results proved for EA can be viewed as extensions or generalizations of well-known methods and results for HA.


Sign in / Sign up

Export Citation Format

Share Document