Regressive partitions and Borel diagonalization

1989 ◽  
Vol 54 (2) ◽  
pp. 540-552 ◽  
Author(s):  
Akihiro Kanamori

Several rather concrete propositions about Borel measurable functions of several variables on the Hilbert cube (countable sequences of reals in the unit interval) were formulated by Harvey Friedman [F1] and correlated with strong set-theoretic hypotheses. Most notably, he established that a “Borel diagonalization” proposition P is equivalent to: for any a ⊆ co and n ⊆ ω there is an ω-model of ZFC + ∃κ(κ is n-Mahlo) containing a. In later work (see the expository Stanley [St] and Friedman [F2]), Friedman was to carry his investigations further into propositions about spaces of groups and the like, and finite propositions. He discovered and analyzed mathematical propositions which turned out to have remarkably strong consistency strength in terms of large cardinal hypotheses in set theory.In this paper, we refine and extend Friedman's work on the Borel diagonalization proposition P. First, we provide more combinatorics about regressive partitions and n-Mahlo cardinals and extend the approach to the context of the Erdös cardinals In passing, a combinatorial proof of a well-known result of Silver about these cardinals is given. Incorporating this work and sharpening Friedman's proof, we then show that there is a level-by-level analysis of P which provides for each n ⊆ ω a proposition almost equivalent to: for any a ⊆ co there is an ω-model of ZFC + ∃κ(κ is n-Mahlo) containing a. Finally, we use the combinatorics to bracket a natural generalization Sω of P between two large cardinal hypotheses.

1989 ◽  
Vol 54 (4) ◽  
pp. 1401-1418 ◽  
Author(s):  
M. Forti ◽  
R. Hinnion

Since Gilmore showed that some theory with a positive comprehension scheme is consistent when the axiom of extensionality is dropped and inconsistent with it (see [1] and [2]), the problem of the consistency of various positive comprehension schemes has been investigated. We give here a short classification, which shows clearly the importance of the axiom of extensionality and of the abstraction operator in these consistency problems. The most difficult problem was to show the consistency of the comprehension scheme for positive formulas, with extensionality but without abstraction operator. In his unpublished thesis, Set theory in which the axiom of foundation fails [3], Malitz solved partially this problem but he needed to assume the existence of some unusual kind of large cardinal; as his original construction is very interesting and his thesis is unpublished, we give a short summary of it. M. Forti solved the problem completely by working in ZF with a free-construction principle (sometimes called an anti-foundation axiom), instead of ZF with the axiom of foundation, as Malitz did.This permits one to obtain the consistency of this positive theory, relative to ZF. In his general investigations about “topological set theories” (to be published), E. Weydert has independently proved the same result. The authors are grateful to the Mathematisches Forshungsinstitut Oberwolfach for giving them the opportunity of discussing these subjects and meeting E. Weydert during the meeting “New Foundations”, March 1–7, 1987.


2003 ◽  
Vol 03 (01) ◽  
pp. 67-83
Author(s):  
HARVEY M. FRIEDMAN

We present some new set and class theoretic independence results from ZFC and NBGC that are particularly simple and close to the primitives of membership and equality (see Secs. 4 and 5). They are shown to be equivalent to familiar small large cardinal hypotheses. We modify these independendent statements in order to give an example of a sentence in set theory with 5 quantifiers which is independent of ZFC (see Sec. 6). It is known that all 3 quantifier sentences are decided in a weak fragment of ZF without power set (see [4]).


2019 ◽  
Vol 85 (1) ◽  
pp. 338-366 ◽  
Author(s):  
JUAN P. AGUILERA ◽  
SANDRA MÜLLER

AbstractWe determine the consistency strength of determinacy for projective games of length ω2. Our main theorem is that $\Pi _{n + 1}^1 $-determinacy for games of length ω2 implies the existence of a model of set theory with ω + n Woodin cardinals. In a first step, we show that this hypothesis implies that there is a countable set of reals A such that Mn (A), the canonical inner model for n Woodin cardinals constructed over A, satisfies $$A = R$$ and the Axiom of Determinacy. Then we argue how to obtain a model with ω + n Woodin cardinal from this.We also show how the proof can be adapted to investigate the consistency strength of determinacy for games of length ω2 with payoff in $^R R\Pi _1^1 $ or with σ-projective payoff.


2018 ◽  
Vol 83 (04) ◽  
pp. 1512-1538 ◽  
Author(s):  
CHRIS LAMBIE-HANSON ◽  
PHILIPP LÜCKE

AbstractWith the help of various square principles, we obtain results concerning the consistency strength of several statements about trees containing ascent paths, special trees, and strong chain conditions. Building on a result that shows that Todorčević’s principle $\square \left( {\kappa ,\lambda } \right)$ implies an indexed version of $\square \left( {\kappa ,\lambda } \right)$, we show that for all infinite, regular cardinals $\lambda < \kappa$, the principle $\square \left( \kappa \right)$ implies the existence of a κ-Aronszajn tree containing a λ-ascent path. We then provide a complete picture of the consistency strengths of statements relating the interactions of trees with ascent paths and special trees. As a part of this analysis, we construct a model of set theory in which ${\aleph _2}$-Aronszajn trees exist and all such trees contain ${\aleph _0}$-ascent paths. Finally, we use our techniques to show that the assumption that the κ-Knaster property is countably productive and the assumption that every κ-Knaster partial order is κ-stationarily layered both imply the failure of $\square \left( \kappa \right)$.


2011 ◽  
Vol 76 (2) ◽  
pp. 541-560 ◽  
Author(s):  
Victoria Gitman ◽  
P. D. Welch

AbstractThis paper continues the study of the Ramsey-like large cardinals introduced in [5] and [14]. Ramsey-like cardinals are defined by generalizing the characterization of Ramsey cardinals via the existence of elementary embeddings. Ultrafilters derived from such embeddings are fully iterable and so it is natural to ask about large cardinal notions asserting the existence of ultrafilters allowing only α-many iterations for some countable ordinal α. Here we study such α-iterable cardinals. We show that the α-iterable cardinals form a strict hierarchy for α ≤ ω1, that they are downward absolute to L for , and that the consistency strength of Schindler's remarkable cardinals is strictly between 1-iterable and 2-iterable cardinals.We show that the strongly Ramsey and super Ramsey cardinals from [5] are downward absolute to the core model K. Finally, we use a forcing argument from a strongly Ramsey cardinal to separate the notions of Ramsey and virtually Ramsey cardinals. These were introduced in [14] as an upper bound on the consistency strength of the Intermediate Chang's Conjecture.


2010 ◽  
Vol 16 (1) ◽  
pp. 1-36 ◽  
Author(s):  
Peter Koellner

AbstractIn this paper we investigate strong logics of first and second order that have certain absoluteness properties. We begin with an investigation of first order logic and the strong logics ω-logic and β-logic, isolating two facets of absoluteness, namely, generic invariance and faithfulness. It turns out that absoluteness is relative in the sense that stronger background assumptions secure greater degrees of absoluteness. Our aim is to investigate the hierarchies of strong logics of first and second order that are generically invariant and faithful against the backdrop of the strongest large cardinal hypotheses. We show that there is a close correspondence between the two hierarchies and we characterize the strongest logic in each hierarchy. On the first-order side, this leads to a new presentation of Woodin's Ω-logic. On the second-order side, we compare the strongest logic with full second-order logic and argue that the comparison lends support to Quine's claim that second-order logic is really set theory in sheep's clothing.


1993 ◽  
Vol 58 (1) ◽  
pp. 55-63 ◽  
Author(s):  
Masahiro Shioya

The study of filters on Pκλ started by Jech [5] as a natural generalization of that of filters on an uncountable regular cardinal κ. Several notions including weak normality have been generalized. However, there are two versions proposed as weak normality for filters on Pκλ. One is due to Abe [1] as a straightforward generalization of weak normality for filters on κ due to Kanamori [6] and the other is due to Mignone [8]. While Mignone's version is weaker than normality, Kanamori-Abe's version is not in general. In fact, Abe [2] has proved, generalizing Kanamori [6], that a filter is weakly normal in the sense of Abe iff it is weakly normal in the sense of Mignone and there exists no disjoint family of cfλ-many positive sets. Therefore Kanamori-Abe's version is essentially a large cardinal property and Mignone's version seems to be the most natural formulation of “weak” normality.In this paper, we study weak normality in the sense of Mignone. In [8], Mignone studies weak normality of canonically defined filters. We complement his chart and try to find the weakly normal closures of these filters (i.e., the minimal weakly normal filters extending them). Therefore our result is a natural refinement of Carr [4].It is now well known that combinatorics on Pκλ is not a naive generalization of that on κ. For example, Menas [7] showed that stationarity on Pκλ can be characterized by 2-dimensional regressive functions, but not by 1-dimensional ones when λ is strictly larger than κ. We show in terms of weak normality that combinatorics on Pκλ vary drastically with respect to cfλ.


1996 ◽  
Vol 2 (1) ◽  
pp. 1-71 ◽  
Author(s):  
Akihiro Kanamori

Set theory is an autonomous and sophisticated field of mathematics, enormously successful not only at its continuing development of its historical heritage but also at analyzing mathematical propositions cast in set-theoretic terms and gauging their consistency strength. But set theory is also distinguished by having begun intertwined with pronounced metaphysical attitudes, and these have even been regarded as crucial by some of its great developers. This has encouraged the exaggeration of crises in foundations and of metaphysical doctrines in general. However, set theory has proceeded in the opposite direction, from a web of intensions to a theory of extensionpar excellence, and like other fields of mathematics its vitality and progress have depended on a steadily growing core of mathematical structures and methods, problems and results. There is also the stronger contention that from the beginning set theory actually developed through a progression ofmathematicalmoves, whatever and sometimes in spite of what has been claimed on its behalf.What follows is an account of the development of set theory from its beginnings through the creation of forcing based on these contentions, with an avowedly Whiggish emphasis on the heritage that has been retained and developed by current set theory. The whole transfinite landscape can be viewed as the result of Cantor's attempt to articulate and solve the Continuum Problem.


1974 ◽  
Vol 39 (2) ◽  
pp. 254-268 ◽  
Author(s):  
William Boos

The results that follow are intended to be understood as informal counterparts to formal theorems of Zermelo-Fraenkel set theory with choice. Basic notation not explained here can usually be found in [5]. It will also be necessary to assume a knowledge of the fundamentals of boolean and generic extensions, in the style of Jech's monograph [3]. Consistency results will be stated as assertions about the existence of certain complete boolean algebras, B, C, etc., either outright or in the sense of a countable standard transitive model M of ZFC augmented by hypotheses about the existence of various large cardinals. Proofs will usually be phrased in terms of the forcing relation ⊩ over such an M, especially when they make heavy use of genericity. They are then assertions about Shoenfield-style P-generic extensions M(G), in which the ‘names’ are required without loss of generality to be elements of MB = (VB)M, B is the boolean completion of P in M (cf. [3, p. 50]: the notation there is RO(P)), the generic G is named by Ĝ ∈ MB such that (⟦p ∈ Ĝ⟧B = p and (cf. [11, p. 361] and [3, pp. 58–59]), and for p ∈ P and c1, …, cn ∈ MB, p ⊩ φ(c1, …, cn) iff ⟦φ(c1, …, cn)⟧B ≥ p (cf. [3, pp. 61–62]).Some prior acquaintance with large cardinal theory is also needed. At this writing no comprehensive introductory survey is yet in print, though [1], [10], [12]and [13] provide partial coverage. The scheme of definitions which follows is intended to fix notation and serve as a glossary for reference, and it is followed in turn by a description of the results of the paper. We adopt the convention that κ, λ, μ, ν, ρ and σ vary over infinite cardinals, and all other lower case Greek letters (except χ, φ, ψ, ϵ) over arbitrary ordinals.


Sign in / Sign up

Export Citation Format

Share Document