Compactly expandable models and stability

1995 ◽  
Vol 60 (2) ◽  
pp. 673-683 ◽  
Author(s):  
Enrique Casanovas

In analogy to ω-logic, one defines M-logic for an arbitrary structure M (see [5],[6]). In M-logic only those structures are considered in which a special part, determined by a fixed unary predicate, is isomorphic to M. Let L be the similarity type of M and T its complete theory. We say that M-logic is κ-compact if it satisfies the compactness theorem for sets of < κ sentences. In this paper we introduce the related notion of compactness for expandability: a model M is κ-compactly expandable if for every extension T′ ⊇ T of cardinality < κ, if every finite subset of T′ can be satisfied in an expansion of M, then T′ can also be satisfied in an expansion of M. Moreover, M is compactly expandable if it is ∥M∥+-compactly expandable. It turns out that M-logic is κ-compact iff M is κ-compactly expandable.Whereas for first-order logic consistency and finite satisfiability are the same, consistency with T and finite satisfiability in M are, in general, no longer the same thing. We call the model Mκ-expandable if every consistent extension T′ ⊇ T of cardinality < κ can be satisfied in an expansion of M. We say that M is expandable if it is ∥M∥+-expandable. Here we study the relationship between saturation, expandability and compactness for expandability. There is a close parallelism between our results about compactly expandable models and some theorems of S. Shelah about expandable models, which are in fact expressed in terms of categoricity of PC-classes (see [7, Th. VI.5.3, VI.5.4 and VI.5.5]). Our results could be obtained directly from these theorems of Shelah if expandability and compactness for expandability were the same notion.

1991 ◽  
Vol 15 (2) ◽  
pp. 123-138
Author(s):  
Joachim Biskup ◽  
Bernhard Convent

In this paper the relationship between dependency theory and first-order logic is explored in order to show how relational chase procedures (i.e., algorithms to decide inference problems for dependencies) can be interpreted as clever implementations of well known refutation procedures of first-order logic with resolution and paramodulation. On the one hand this alternative interpretation provides a deeper insight into the theoretical foundations of chase procedures, whereas on the other hand it makes available an already well established theory with a great amount of known results and techniques to be used for further investigations of the inference problem for dependencies. Our presentation is a detailed and careful elaboration of an idea formerly outlined by Grant and Jacobs which up to now seems to be disregarded by the database community although it definitely deserves more attention.


1999 ◽  
Vol 64 (4) ◽  
pp. 1751-1773 ◽  
Author(s):  
Lauri Hella ◽  
Leonid Libkin ◽  
Juha Nurmonen

AbstractMany known tools for proving expressibility bounds for first-ordér logic are based on one of several locality properties. In this paper we characterize the relationship between those notions of locality. We note that Gaifman's locality theorem gives rise to two notions: one deals with sentences and one with open formulae. We prove that the former implies Hanf's notion of locality, which in turn implies Gaifman's locality for open formulae. Each of these implies the bounded degree property, which is one of the easiest tools for proving expressibility bounds. These results apply beyond the first-order case. We use them to derive expressibility bounds for first-order logic with unary quantifiers and counting. We also characterize the notions of locality on structures of small degree.


1999 ◽  
Vol 64 (2) ◽  
pp. 747-760 ◽  
Author(s):  
Szabolcs Mikulás ◽  
Maarten Marx

AbstractIn this paper we show that relativized versions of relation set algebras and cylindric set algebras have undecidable equational theories if we include coordinatewise versions of the counting operations into the similarity type. We apply these results to the guarded fragment of first-order logic.


1996 ◽  
Vol 61 (3) ◽  
pp. 802-817 ◽  
Author(s):  
Lauri Hella ◽  
Kerkko Luosto ◽  
Jouko Väänänen

AbstractThe concept of a generalized quantifier of a given similarity type was defined in [12]. Our main result says that on finite structures different similarity types give rise to different classes of generalized quantifiers. More exactly, for every similarity type t there is a generalized quantifier of type t which is not definable in the extension of first order logic by all generalized quantifiers of type smaller than t. This was proved for unary similarity types by Per Lindström [17] with a counting argument. We extend his method to arbitrary similarity types.


2019 ◽  
Vol 84 (3) ◽  
pp. 1136-1167 ◽  
Author(s):  
PIETRO GALLIANI

AbstractIn Team Semantics, a dependency notion is strongly first order if every sentence of the logic obtained by adding the corresponding atoms to First-Order Logic is equivalent to some first-order sentence. In this work it is shown that all nontrivial dependency atoms that are strongly first order, downwards closed, and relativizable (in the sense that the relativizations of the corresponding atoms with respect to some unary predicate are expressible in terms of them) are definable in terms of constancy atoms.Additionally, it is shown that any strongly first-order dependency is safe for any family of downwards closed dependencies, in the sense that every sentence of the logic obtained by adding to First-Order Logic both the strongly first-order dependency and the downwards closed dependencies is equivalent to some sentence of the logic obtained by adding only the downwards closed dependencies.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850003
Author(s):  
Deepika Prakash ◽  
N. Parimala

In order to ensure policy compliance, it is important for all stakeholders to understand the policy. One of the ways in which policies are represented in an organization is first-order logic. We propose a metric-based approach to measure understandability by measuring the structural complexity of the first-order representation of a policy. In this regard, we define a two-step approach that first calculates the complexity of an individual policy and then computes the complexity of a set of policies or a policy set. A running example of a policy set of six policies taken from the health domain is used. Finally, we evaluate the metrics using theoretical framework of Zuse. The relationship between structural complexity of a policy set and understandability is established by performing empirical validations. This was done by formulating policy sets from 23 domains.


2009 ◽  
Vol 19 (12) ◽  
pp. 3091-3099 ◽  
Author(s):  
Gui-Hong XU ◽  
Jian ZHANG

Author(s):  
Tim Button ◽  
Sean Walsh

Chapters 6-12 are driven by questions about the ability to pin down mathematical entities and to articulate mathematical concepts. This chapter is driven by similar questions about the ability to pin down the semantic frameworks of language. It transpires that there are not just non-standard models, but non-standard ways of doing model theory itself. In more detail: whilst we normally outline a two-valued semantics which makes sentences True or False in a model, the inference rules for first-order logic are compatible with a four-valued semantics; or a semantics with countably many values; or what-have-you. The appropriate level of generality here is that of a Boolean-valued model, which we introduce. And the plurality of possible semantic values gives rise to perhaps the ‘deepest’ level of indeterminacy questions: How can humans pin down the semantic framework for their languages? We consider three different ways for inferentialists to respond to this question.


2020 ◽  
Author(s):  
Michał Walicki

Abstract Graph normal form, introduced earlier for propositional logic, is shown to be a normal form also for first-order logic. It allows to view syntax of theories as digraphs, while their semantics as kernels of these digraphs. Graphs are particularly well suited for studying circularity, and we provide some general means for verifying that circular or apparently circular extensions are conservative. Traditional syntactic means of ensuring conservativity, like definitional extensions or positive occurrences guaranteeing exsitence of fixed points, emerge as special cases.


Sign in / Sign up

Export Citation Format

Share Document