The existence of finitely based lower covers for finitely based equational theories

1995 ◽  
Vol 60 (4) ◽  
pp. 1242-1250
Author(s):  
Jaroslav Ježek ◽  
George F. McNulty

By an equational theory we mean a set of equations from some fixed language which is closed with respect to logical consequences. We regard equations as universal sentences whose quantifier-free parts are equations between terms. In our notation, we suppress the universal quantifiers. Once a language has been fixed, the collection of all equational theories for that language is a lattice ordered by set inclusion The meet in this lattice is simply intersection; the join of a collection of equational theories is the equational theory axiomatized by the union of the collection. In this paper we prove, for languages with only finitely many fundamental operation symbols, that any nontrivial finitely axiomatizable equational theory covers some other finitely axiomatizable equational theory. In fact, our result is a little more general.There is an extensive literature concerning lattices of equational theories. These lattices are always algebraic. Compact elements of these lattices are the finitely axiomatizable equational theories. We also call them finitely based. The largest element in the lattice is compact; it is the equational theory based on the single equation x ≈ y. The smallest element of the lattice is the trivial theory consisting of tautological equations. For all but the simplest languages, the lattice of equational theories is intricate. R. McKenzie in [6] was able to prove in essence that the underlying language can be recovered from the isomorphism type of this lattice.

2010 ◽  
Vol 4 (1) ◽  
pp. 81-105 ◽  
Author(s):  
ROBIN HIRSCH ◽  
SZABOLCS MIKULÁS

We prove that algebras of binary relations whose similarity type includes intersection, union, and one of the residuals of relation composition form a nonfinitely axiomatizable quasivariety and that the equational theory is not finitely based. We apply this result to the problem of the completeness of the positive fragment of relevance logic with respect to binary relations.


2016 ◽  
Vol Vol. 17 no. 3 (Combinatorics) ◽  
Author(s):  
Inna Mikhaylova

International audience Epigroups are semigroups equipped with an additional unary operation called pseudoinversion. Each finite semigroup can be considered as an epigroup. We prove the following theorem announced by Zhil'tsov in 2000: the equational theory of the class of all epigroups coincides with the equational theory of the class of all finite epigroups and is decidable. We show that the theory is not finitely based but provide a transparent infinite basis for it.


2019 ◽  
Vol 29 (06) ◽  
pp. 909-925
Author(s):  
Z Ésik

AbstractSeveral fixed-point models share the equational properties of iteration theories, or iteration categories, which are cartesian categories equipped with a fixed point or dagger operation subject to certain axioms. After discussing some of the basic models, we provide equational bases for iteration categories and offer an analysis of the axioms. Although iteration categories have no finite base for their identities, there exist finitely based implicational theories that capture their equational theory. We exhibit several such systems. Then we enrich iteration categories with an additive structure and exhibit interesting cases where the interaction between the iteration category structure and the additive structure can be captured by a finite number of identities. This includes the iteration category of monotonic or continuous functions over complete lattices equipped with the least fixed-point operation and the binary supremum operation as addition, the categories of simulation, bisimulation, or language equivalence classes of processes, context-free languages, and others. Finally, we exhibit a finite equational system involving residuals, which is sound and complete for monotonic or continuous functions over complete lattices in the sense that it proves all of their identities involving the operations and constants of cartesian categories, the least fixed-point operation and binary supremum, but not involving residuals.


1989 ◽  
Vol 54 (3) ◽  
pp. 1018-1022 ◽  
Author(s):  
Peter Perkins

A computable groupoid is an algebra ‹N, g› where N is the set of natural numbers and g is a recursive (total) binary operation on N. A set L of natural numbers is a computable list of computable groupoids iff L is recursive, ‹N, ϕe› is a computable groupoid for each e ∈ L, and e ∈ L whenever e codes a primitive recursive description of a binary operation on N.Theorem 1. Let L be any computable list of computable groupoids. The set {e ∈ L: the equational theory of ‹N, ϕe› is finitely axiomatizable} is not recursive.Theorem 2. Let S be any recursive set of positive integers. A computable groupoid GS can be constructed so that S is inifinite iff GS has a finitely axiomatizable equational theory.The problem of deciding which finite algebras have finitely axiomatizable equational theories has remained open since it was first posed by Tarski in the early 1960's. Indeed, it is still not known whether the set of such finite algebras is recursively (or corecursively) enumerable. McKenzie [7] has shown that this question of finite axiomatizability for any (finite) algebra of finite type can be reduced to that for a (finite) groupoid.


2000 ◽  
Vol 65 (4) ◽  
pp. 1705-1712 ◽  
Author(s):  
Markus Junker

Several attempts have been done to distinguish “positive” information in an arbitrary first order theory, i.e., to find a well behaved class of closed sets among the definable sets. In many cases, a definable set is said to be closed if its conjugates are sufficiently distinct from each other. Each such definition yields a class of theories, namely those where all definable sets are constructible, i.e., boolean combinations of closed sets. Here are some examples, ordered by strength:Weak normality describes a rather small class of theories which are well understood by now (see, for example, [P]). On the other hand, normalization is so weak that all theories, in a suitable context, are normalizable (see [HH]). Thus equational theories form an interesting intermediate class of theories. Little work has been done so far. The original work of Srour [S1, S2, S3] adopts a point of view that is closer to universal algebra than to stability theory. The fundamental definitions and model theoretic properties can be found in [PS], though some easy observations are missing there. Hrushovski's example of a stable non-equational theory, the first and only one so far, is described in the unfortunately unpublished manuscript [HS]. In fact, it is an expansion of the free pseudospace constructed independently by Baudisch and Pillay in [BP] as an example of a strictly 2-ample theory. Strong equationality, defined in [Hr], is also investigated in [HS].


1993 ◽  
Vol 48 (1) ◽  
pp. 151-162 ◽  
Author(s):  
Andrzej Kisielewicz ◽  
Norbert Newrly

An algebra is said to be polynomially n−dense if all equational theories extending the equational theory of the algebra with constants have a relative base consisting of equations in no more than n variables. In this paper, we investigate polynomial density of commutative semigroups. In particular, we prove that, for n > 1, a commutative semigroup is (n − 1)-dense if and only if its subsemigroup consisting of all n−factor-products is either a monoid or a union of groups of a bounded order. Moreover, a commutative semigroup is 0-dense if and only if it is a bounded semilattice. For semilattices, we give a full description of the corresponding lattices of equational theories.


2001 ◽  
Vol 8 (21) ◽  
Author(s):  
Luca Aceto ◽  
Zoltán Ésik ◽  
Anna Ingólfsdóttir

This paper studies the equational theory of various exotic semirings presented in the literature. Exotic semirings are semirings whose underlying carrier set is some subset of the set of real numbers equipped with binary operations of minimum or maximum as sum, and addition as product. Two prime examples of such structures are the <em> (max,+) semiring</em> and the <em>tropical semiring</em>. It is shown that none of the exotic semirings commonly considered in the literature has a finite basis for its equations, and that similar results hold for the commutative idempotent weak semirings that underlie them. For each of these commutative idempotent weak semirings, the paper offers characterizations of the equations that hold in them, decidability results for their equational theories, explicit descriptions of the free algebras in the varieties they generate, and relative axiomatization results.


1990 ◽  
Vol 42 (1) ◽  
pp. 57-70 ◽  
Author(s):  
J. Ježek ◽  
P. PudláK ◽  
J. Tůma

In 1986, Lampe presented a counterexample to the conjecture that every algebraic lattice with a compact greatest element is isomorphic to the lattice of extensions of an equational theory. In this paper we investigate equational theories of semi-lattices with operators. We construct a class of lattices containing all infinitely distributive algebraic lattices with a compact greatest element and closed under the operation of taking the parallel join, such that every element of the class is isomorphic to the lattice of equational theories, extending the theory of a semilattice with operators.


1980 ◽  
Vol 45 (2) ◽  
pp. 311-316 ◽  
Author(s):  
Roger Maddux

There is no algorithm for determining whether or not an equation is true in every 3-dimensional cylindric algebra. This theorem completes the solution to the problem of finding those values of α and β for which the equational theories of CAα and RCAβ are undecidable. (CAα and RCAβ are the classes of α-dimensional cylindric algebras and representable β-dimensional cylindric algebras. See [4] for definitions.) This problem was considered in [3]. It was known that RCA0 = CA0 and RCA1 = CA1 and that the equational theories of these classes are decidable. Tarski had shown that the equational theory of relation algebras is undecidable and, by utilizing connections between relation algebras and cylindric algebras, had also shown that the equational theories of CAα and RCAβ are undecidable whenever 4 ≤ α and 3 ≤ β. (Tarski's argument also applies to some varieties K ⊆ RCAβ with 3 ≤ β and to any variety K such that RCAα ⊆ K ⊆ CAα and 4 ≤ α.)Thus the only cases left open in 1961 were CA2, RCA2 and CA3. Shortly there-after Henkin proved, in one of Tarski's seminars at Berkeley, that the equational theory of CA2 is decidable, and Scott proved that the set of valid sentences in a first-order language with only two variables is recursive [11]. (For a more model-theoretic proof of Scott's theorem see [9].) Scott's result is equivalent to the decidability of the equational theory of RCA2, so the only case left open was CA3.


Sign in / Sign up

Export Citation Format

Share Document