The complexity of ODDnA

2000 ◽  
Vol 65 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Richard Beigel ◽  
William Gasarch ◽  
Martin Kummer ◽  
Georgia Martin ◽  
Timothy Mcnicholl ◽  
...  

AbstractFor a fixed set A. the number of queries to A needed in order to decide a set S is a measure of S's complexity. We consider the complexity of certain sets defined in terms of A:and, for m > 2,where #nA. (x1….. xn) = A(x1) + A(xn)(We identify with , where χA is the characteristic function of A.)If A is a nonrecursive semirecursive set or if A is a jump, we give tight bounds on the number of queries needed in order to decide ODDnA and MODmnA:• ODDnA can be decided with n parallel queries to A, but not with n − 1.• ODDnA can be decided with ⌈log(n + 1)⌉ sequential queries to A but not with ⌈log(n + 1)⌉ − 1.• MODmnA can be decided with ⌈n/m⌉ + ⌊n/m⌋ parallel queries to A but not with ⌈n/m⌉ + ⌊n/m⌋ − 1.• MODmnA can be decided with ⌈log(⌈n/m⌉ + ⌊n/m⌋ + 1)⌉ sequential queries to A but not with ⌈log(⌈n/m⌉ + ⌊n/m⌋ + 1)⌉ − 1.The lower bounds above hold for nonrecursive recursively enumerable sets A as well. (Interestingly, the lower bounds for recursively enumerable sets follow by a general result from the lower bounds for semirecursive sets.)In particular, every nonzero truth-table degree contains a set A such that ODDnA cannot be decided with n − 1 parallel queries to A. Since every truth-table degree also contains a set B such that ODDnB can be decided with one query to B, a set's query complexity depends more on its structure than on its degree.For a fixed set A,Q(n, A) = {S: S can be decided with n sequential queries to A}.Q∥ (n, A) = {S : S can be decided with n parallel queries to A}.We show that if A is semirecursive or recursively enumerable, but is not recursive, then these classes form non-collapsing hierarchies:• Q(0,A) ⊂ Q (1, A) ⊂ Q(2, A) ⊂ …Q∥ (0, A) ⊂ Q∥ (1, A) ⊂ Q∥ (2, A) ⊂ …The same is true if A is a jump.

1992 ◽  
Vol 57 (2) ◽  
pp. 682-687 ◽  
Author(s):  
Valentina Harizanov ◽  
Martin Kummer ◽  
Jim Owings

In 1960 G. F. Rose [R] made the following definition: A function f: ω → ω is (m, n)-computable, where 1 ≤ m ≤ n, iff there exists a recursive function R: ωn → ωn such that, for all n-tuples (x1,…, xn) of distinct natural numbers,J. Myhill (see [McN, p. 393]) asked if f had to be recursive if m was close to n; B. A. Trakhtenbrot [T] responded by showing in 1963 that f is recursive whenever 2m > n. This result is optimal, because, for example, the characteristic function of any semirecursive set is (1,2)-computable. Trakhtenbrot's work was extended by E. B. Kinber [Ki1], using similar techniques. In 1986 R. Beigel [B] made a powerful conjecture, much more general than the above results. Partial verification, falling short of a full proof, appeared in [O]. Using new techniques, M. Kummer has recently established the conjecture, which will henceforth be referred to as the cardinality theorem (CT). It is the goal of this paper to show the connections between these various theorems, to review the methods used by Trakhtenbrot, and to use them to prove a special case of CT strong enough to imply Kinber's theorem (see §3). We thus have a hierarchy of results, with CT at the top. We will also include a discussion of Kummer's methods, but not a proof of CT.


1984 ◽  
Vol 49 (4) ◽  
pp. 1160-1170 ◽  
Author(s):  
Lawrence V. Welch

Certain investigations have been made concerning the nature of classes of recursively enumerable sets, and the relation of such classes to the recursively enumerable indices of their sets. For instance, a theorem of Rice [3, Theorem XIV(a), p. 324] states that if A is the complete set of indices for a class of recursively enumerable sets (that is, if there is a class of recursively enumerable sets such that and if A is recursive, then either A = ⌀ or A = ω. A relate theorem by Rice and Shapiro [3, Theorem XIV(b), p. 324] can be stated as follows:Let be a class of recursively enumerable sets, and let A be the complete set of indices for . Then A is r.e. if and only if there is an r.e. set D of canonical indices of finite sets Du, u ∈ D, such thatA somewhat similar theorem of Yates is the following: Let be a class of recursively enumerable sets which contains all finite sets. Let A be the complete set of indices for . Then there is a uniform recursive enumeration of the sets in if and only if A is recursively enumerable in 0(2)—that is, if and only if A is Σ3. A corollary of this is that if C is any r.e. set such that C(2)≡T⌀(2), there is a uniform recursive enumeration of all sets We such that We ≤TC [9, Theorem 9, p. 265].


1984 ◽  
Vol 49 (2) ◽  
pp. 503-513 ◽  
Author(s):  
S. B. Cooper

As in Rogers [3], we treat the partial degrees as notational variants of the enumeration degrees (that is, the partial degree of a function is identified with the enumeration degree of its graph). We showed in [1] that there are no minimal partial degrees. The purpose of this paper is to show that the partial degrees below 0′ (that is, the partial degrees of the Σ2 partial functions) are dense. From this we see that the Σ2 sets play an analagous role within the enumeration degrees to that played by the recursively enumerable sets within the Turing degrees. The techniques, of course, are very different to those required to prove the Sacks Density Theorem (see [4, p. 20]) for the recursively enumerable Turing degrees.Notation and terminology are similar to those of [1]. In particular, We, Dx, 〈m, n〉, ψe are, respectively, notations for the e th r.e. set in a given standard listing of the r.e. sets, the finite set whose canonical index is x, the recursive code for (m, n) and the e th enumeration operator (derived from We). Recursive approximations etc. are also defined as in [1].Theorem 1. If B and C are Σ2sets of numbers, and B ≰e C, then there is an e-operator Θ withProof. We enumerate an e-operator Θ so as to satisfy the list of conditions:Let {Bs ∣ s ≥ 0}, {Cs ∣ s ≥ 0} be recursive sequences of approximations to B, C respectively, for which, for each х, х ∈ B ⇔ (∃s*)(∀s ≥ s*)(х ∈ Bs) and х ∈ C ⇔ (∃s*)(∀s ≥ s*)(х ∈ Cs).


1972 ◽  
Vol 37 (3) ◽  
pp. 572-578 ◽  
Author(s):  
Raphael M. Robinson

A set D of natural numbers is called Diophantine if it can be defined in the formwhere P is a polynomial with integer coefficients. Recently, Ju. V. Matijasevič [2], [3] has shown that all recursively enumerable sets are Diophantine. From this, it follows that a bound for n may be given.We use throughout the logical symbols ∧ (and), ∨ (or), → (if … then …), ↔ (if and only if), ⋀ (for every), and ⋁ (there exists); negation does not occur explicitly. The variables range over the natural numbers 0,1,2,3, …, except as otherwise noted.It is the purpose of this paper to show that if we do not insist on prenex form, then every Diophantine set can be defined existentially by a formula in which not more than five existential quantifiers are nested. Besides existential quantifiers, only conjunctions are needed. By Matijasevič [2], [3], the representation extends to all recursively enumerable sets. Using this, we can find a bound for the number of conjuncts needed.Davis [1] proved that every recursively enumerable set of natural numbers can be represented in the formwhere P is a polynomial with integer coefficients. I showed in [5] that we can take λ = 4. (A minor error is corrected in an Appendix to this paper.) By the methods of the present paper, we can again obtain this result, and indeed in a stronger form, with the universal quantifier replaced by a conjunction.


1996 ◽  
Vol 61 (3) ◽  
pp. 880-905 ◽  
Author(s):  
Klaus Ambos-Spies ◽  
Peter A. Fejer ◽  
Steffen Lempp ◽  
Manuel Lerman

AbstractWe give a decision procedure for the ∀∃-theory of the weak truth-table (wtt) degrees of the recursively enumerable sets. The key to this decision procedure is a characterization of the finite lattices which can be embedded into the r.e.wtt-degrees by a map which preserves the least and greatest elements: a finite lattice has such an embedding if and only if it is distributive and the ideal generated by its cappable elements and the filter generated by its cuppable elements are disjoint.We formulate general criteria that allow one to conclude that a distributive upper semi-lattice has a decidable two-quantifier theory. These criteria are applied not only to the weak truth-table degrees of the recursively enumerable sets but also to various substructures of the polynomial many-one (pm) degrees of the recursive sets. These applications to thepmdegrees require no new complexity-theoretic results. The fact that thepm-degrees of the recursive sets have a decidable two-quantifier theory answers a question raised by Shore and Slaman in [21].


1982 ◽  
Vol 47 (3) ◽  
pp. 549-571 ◽  
Author(s):  
James P. Jones

In 1961 Martin Davis, Hilary Putnam and Julia Robinson [2] proved that every recursively enumerable set W is exponential diophantine, i.e. can be represented in the formHere P is a polynomial with integer coefficients and the variables range over positive integers.In 1970 Ju. V. Matijasevič used this result to establish the unsolvability of Hilbert's tenth problem. Matijasevič proved [11] that the exponential relation y = 2x is diophantine This together with [2] implies that every recursively enumerable set is diophantine, i.e. every r.e. set Wcan be represented in the formFrom this it follows that there does not exist an algorithm to decide solvability of diophantine equations. The nonexistence of such an algorithm follows immediately from the existence of r.e. nonrecursive sets.Now it is well known that the recursively enumerable sets W1, W2, W3, … can be enumerated in such a way that the binary relation x ∈ Wv is also recursively enumerable. Thus Matijasevič's theorem implies the existence of a diophantine equation U such that for all x and v,


2017 ◽  
Vol 82 (1) ◽  
pp. 359-374
Author(s):  
RASMUS BLANCK ◽  
ALI ENAYAT

AbstractLet $\left\langle {{W_n}:n \in \omega } \right\rangle$ be a canonical enumeration of recursively enumerable sets, and suppose T is a recursively enumerable extension of PA (Peano Arithmetic) in the same language. Woodin (2011) showed that there exists an index $e \in \omega$ (that depends on T) with the property that if${\cal M}$ is a countable model of T and for some${\cal M}$-finite set s, ${\cal M}$ satisfies ${W_e} \subseteq s$, then${\cal M}$ has an end extension${\cal N}$ that satisfies T + We = s.Here we generalize Woodin’s theorem to all recursively enumerable extensions T of the fragment ${{\rm{I}\rm{\Sigma }}_1}$ of PA, and remove the countability restriction on ${\cal M}$ when T extends PA. We also derive model-theoretic consequences of a classic fixed-point construction of Kripke (1962) and compare them with Woodin’s theorem.


Author(s):  
Artiom Alhazov ◽  
Rudolf Freund ◽  
Sergiu Ivanov

AbstractCatalytic P systems are among the first variants of membrane systems ever considered in this area. This variant of systems also features some prominent computational complexity questions, and in particular the problem of using only one catalyst in the whole system: is one catalyst enough to allow for generating all recursively enumerable sets of multisets? Several additional ingredients have been shown to be sufficient for obtaining computational completeness even with only one catalyst. In this paper, we show that one catalyst is sufficient for obtaining computational completeness if either catalytic rules have weak priority over non-catalytic rules or else instead of the standard maximally parallel derivation mode, we use the derivation mode maxobjects, i.e., we only take those multisets of rules which affect the maximal number of objects in the underlying configuration.


1999 ◽  
Vol 64 (4) ◽  
pp. 1407-1425
Author(s):  
Claes Strannegård

AbstractWe investigate the modal logic of interpretability over Peano arithmetic. Our main result is a compactness theorem that extends the arithmetical completeness theorem for the interpretability logic ILMω. This extension concerns recursively enumerable sets of formulas of interpretability logic (rather than single formulas). As corollaries we obtain a uniform arithmetical completeness theorem for the interpretability logic ILM and a partial answer to a question of Orey from 1961. After some simplifications, we also obtain Shavrukov's embedding theorem for Magari algebras (a.k.a. diagonalizable algebras).


Sign in / Sign up

Export Citation Format

Share Document