A lambda proof of the P-W theorem

2000 ◽  
Vol 65 (4) ◽  
pp. 1841-1849
Author(s):  
Sachio Hirokawa ◽  
Yuichi Komori ◽  
Misao Nagayama

AbstractThe logical system P-W is an implicational non-commutative intuitionistic logic denned by axiom schemes B − (b → c) → (a → b) → a → c. B′ = (a → b) → (b → c) → a → c. I - a → a with the rules of modus ponens and substitution. The P-W problem is a problem asking whether α - β holds if α → β and β → α are both provable in P-W. The answer is affirmative. The first to prove this was E. P. Martin by a semantical method.In this paper, we give the first proof of Martin's theorem based on the theory of simply typed λ-calculus. This proof is obtained as a corollary to the main theorem of this paper, shown without using Martin's Theorem, that any closed hereditary right-maximal linear (HRML) λ-term of type α → α is βη-reducible to λxx. Here the HRML λ-terms correspond, via the Curry-Howard isomorphism, to the P-W proofs in natural deduction style.

1939 ◽  
Vol 4 (3) ◽  
pp. 105-112 ◽  
Author(s):  
Alfred Tarski

It is my intention in this paper to add somewhat to the observations already made in my earlier publications on the existence of undecidable statements in systems of logic possessing rules of inference of a “non-finitary” (“non-constructive”) character (§§1–4).I also wish to emphasize once more the part played by the concept of truth in relation to problems of this nature (§§5–8).At the end of this paper I shall give a result which was not touched upon in my earlier publications. It seems to be of interest for the reason (among others) that it is an example of a result obtained by a fruitful combination of the method of constructing undecidable statements (due to K. Gödel) with the results obtained in the theory of truth.1. Let us consider a formalized logical system L. Without giving a detailed description of the system we shall assume that it possesses the usual “finitary” (“constructive”) rules of inference, such as the rule of substitution and the rule of detachment (modus ponens), and that among the laws of the system are included all the postulates of the calculus of statements, and finally that the laws of the system suffice for the construction of the arithmetic of natural numbers. Moreover, the system L may be based upon the theory of types and so be the result of some formalization of Principia mathematica. It may also be a system which is independent of any theory of types and resembles Zermelo's set theory.


Author(s):  
Jaykov Foukzon

In this article Russell’s paradox and Cantor’s paradox resolved successfully using intuitionistic logic with restricted modus ponens rule.


Author(s):  
Jaykov Foukzon

In this paper intuitionistic set theory INC#∞# in infinitary set theoretical language is considered. External induction principle in nonstandard intuitionistic arithmetic were derived. Non trivial application in number theory is considered.The Goldbach-Euler theorem is obtained without any references to Catalan conjecture. Main results are: (i) number ee is transcendental; (ii) the both numbers e + π and e − π are irrational.


2017 ◽  
Vol 46 (3/4) ◽  
Author(s):  
Krystyna Mruczek-Nasieniewska ◽  
Marek Nasieniewski

In [1] J.-Y. Bèziau formulated a logic called Z. Bèziau’s idea was generalized independently in [6] and [7]. A family of logics to which Z belongs is denoted in [7] by K. In particular; it has been shown in [6] and [7] that there is a correspondence between normal modal logics and logics from the class K. Similar; but only partial results has been obtained also for regular logics (see [8] and [9]). In (Došen; [2]) a logic N has been investigated in the language with negation; implication; conjunction and disjunction by axioms of positive intuitionistic logic; the right-to-left part of the second de Morgan law; and the rules of modus ponens and contraposition. From the semantical point of view the negation used by Došen is the modal operator of impossibility. It is known this operator is a characteristic of the modal interpretation of intuitionistic negation (see [3; p. 300]). In the present paper we consider an extension of N denoted by N+. We will prove that every extension of N+ that is closed under the same rules as N+; corresponds to a regular logic being an extension of the regular deontic logic D21 (see [4] and [13]). The proved correspondence allows to obtain from soundnesscompleteness result for any given regular logic containing D2, similar adequacy theorem for the respective extension of the logic N+.


2009 ◽  
Vol 86 (100) ◽  
pp. 27-34
Author(s):  
Mirjana Borisavljevic

Pairs of systems, which consist of a system of sequents and a natural deduction system for some part of intuitionistic logic, are considered. For each of these pairs of systems the property that the normalization theorem is a consequence of the cut-elimination theorem is presented.


Axioms ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 118 ◽  
Author(s):  
Valentin Goranko

Hybrid deduction–refutation systems are deductive systems intended to derive both valid and non-valid, i.e., semantically refutable, formulae of a given logical system, by employing together separate derivability operators for each of these and combining ‘hybrid derivation rules’ that involve both deduction and refutation. The goal of this paper is to develop a basic theory and ‘meta-proof’ theory of hybrid deduction–refutation systems. I then illustrate the concept on a hybrid derivation system of natural deduction for classical propositional logic, for which I show soundness and completeness for both deductions and refutations.


1982 ◽  
Vol 47 (1) ◽  
pp. 184-186 ◽  
Author(s):  
E.G.K. López-Escobar

In 1959 M. Dummett [3] introduced the logic LC obtained by adding the axiom ACpqCqp to the formalization of the intuitionistic prepositional calculus having modus ponens and substitution as its rules of inference. Later on R. A. Bull [1] showed, by quite a roundabout way, that the implicational theses of LC were precisely the theses of the implicational calculus obtained by adding the axiom CCCpqrCCCqprr to the system of positive implication. In 1964 Bull [2] gave another proof, this time using results of Birkhoff concerning subdirectly reducible algebras.The aim of this short note is to emphasize that the use of Gentzen's natural deduction systems (see Prawitz [4]) allows us to give a much more direct proof.


Sign in / Sign up

Export Citation Format

Share Document