Late Pleistocene Settlement in the Nenana Valley, Central Alaska

1989 ◽  
Vol 54 (2) ◽  
pp. 263-287 ◽  
Author(s):  
William R. Powers ◽  
John F. Hoffecker

Ongoing research in the Nenana Valley is uncovering a complex record of Late Glacial settlement in the foothills of the Alaska Range. A local eolian sequence provides relatively precise stratigraphic and chronological control, permitting integration with regional paleoclimatic history. Initial occupation seems to have occurred approximately 12,000 years ago, and is represented by several assemblages containing bifacial points. Microblade technology did not appear until ca. 10,500 B.P. The valley probably was exploited on a seasonal basis for large mammal procurement.

2014 ◽  
Vol 82 (1) ◽  
pp. 209-221 ◽  
Author(s):  
Pierre-Henri Blard ◽  
Jérôme Lave ◽  
Kenneth A. Farley ◽  
Victor Ramirez ◽  
Nestor Jimenez ◽  
...  

AbstractThis work presents the first reconstruction of late Pleistocene glacier fluctuations on Uturuncu volcano, in the Southern Tropical Andes. Cosmogenic 3He dating of glacial landforms provides constraints on ancient glacier position between 65 and 14 ka. Despite important scatter in the exposure ages on the oldest moraines, probably resulting from pre-exposure, these 3He data constrain the timing of the moraine deposits and subsequent glacier recessions: the Uturuncu glacier may have reached its maximum extent much before the global LGM, maybe as early as 65 ka, with an equilibrium line altitude (ELA) at 5280 m. Then, the glacier remained close to its maximum position, with a main stillstand identified around 40 ka, and another one between 35 and 17 ka, followed by a limited recession at 17 ka. Then, another glacial stillstand is identified upstream during the late glacial period, probably between 16 and 14 ka, with an ELA standing at 5350 m. This stillstand is synchronous with the paleolake Tauca highstand. This result indicates that this regionally wet and cold episode, during the Heinrich 1 event, also impacted the Southern Altiplano. The ELA rose above 5450 m after 14 ka, synchronously with the Bolling–Allerod.


2003 ◽  
Vol 68 (2) ◽  
pp. 333-352 ◽  
Author(s):  
Nicole M. Waguespack ◽  
Todd A. Surovell

Traditionally, hunter-gatherers of the Clovis period have been characterized as specialized hunters of large terrestrial mammals. Recent critiques have attempted to upend this position both empirically and theoretically, alternatively favoring a more generalized foraging economy. In this paper, the distinction between subsistence specialists and generalists is framed in terms of forager selectivity with regards to hunted prey, following a behavioral ecological framework. Faunal data are compiled from 33 Clovis sites and used to test the two alternative diet-breadth hypotheses. The data support the older “Clovis as specialist” model, although some use of small game is apparent. Furthermore, data from modern hunter-gatherers are marshaled to support the theoretical plausibility of specialized large-mammal hunting across North America during the Late Pleistocene.


2009 ◽  
Vol 24 (7) ◽  
pp. 677-689 ◽  
Author(s):  
Nicolás E. Young ◽  
Jason P. Briner ◽  
Darrell S. Kaufman

1997 ◽  
Vol 47 (3) ◽  
pp. 329-336 ◽  
Author(s):  
Robert Brennan ◽  
Jay Quade

Both aquatic and land snails are common in the geologic record, but their utility in dating is greatly restricted by their well-documented tendency to yield14C dates inconsistent with true14C ages. In this study, we examine the use of14C ages from (1) small, previously unstudied, terrestrial snails to date hosting spring deposits and from (2) cooccuring aquatic snails to constrain groundwater travel times during the last glacial period. Our study area in the southern Great Basin encompasses Yucca Mountain, site of the proposed high-level nuclear waste repository, where information on the age and extent of past high water tables and on groundwater flow times is crucial to several licensing issues. Our results show that shells of small terrestrial snails belonging toValloniasp. yield14C dates consistent with14C ages of associated carbonized wood. These results imply that these taxa can provide reliable14C age control on the broadly distributed deposits in which they have been described. In contrast, cooccurring aquatic snails from fossil spring deposits yield14C ages generally greater than the control age. This is because the aquatic shells often formed in spring waters that had an initial14C deficiency. However, the magnitude of the deficiency is much less than that observed in nearby modern springs, arguing for much higher average14C contents in late Pleistocene groundwaters in these basins. If representative, this implies shorter groundwater travel times through aquifers in southern Nevada during late-glacial time.


2020 ◽  
Author(s):  
Ekaterina Matlakhova ◽  
Andrei Panin ◽  
Vadim Ukraintsev

<p>The Moksha River valley was studied in its lower part between the Tsna River confluence and the mouth of the Moksha River. Wide floodplain and two levels of terraces are presented on the studied part of the valley. The height of the floodplain is from 1 to 6 m, of the first terrace – about 9-11 m, of the second terrace – 18-22 m. The width of the valley in this area is about 14-16 km, but sometimes it can reach 20-22 km and more. The width of the floodplain is about 12-14 km.</p><p>The Moksha River is a meandering channel. Large and small (modern-size) meandering palaeochannels spread widely on the floodplain surface. These palaeochannels were the main objects of our study. Small palaeochannels have the same parameters as the modern river channel: their width is about 100-150 m, wavelength is between 300-400 and 600-700 m. For the large palaeochannels (macromeanders) the mean parameters are the following: width is about 250-300 m, wavelength is about 1500-2000 m. These large palaeochannels are the signs of high flood activity epoch(s).</p><p>In our study we used a number of field and laboratory methods. Twelve boreholes in large and small palaeochannels were made during fieldwork in August-September 2019. Organic material from studied palaeochennels was sampled to make radiocarbon (AMS) dating to find the time of palaeochannels’ formation and infilling. Also we made the reconstructions of paleo-discharges of the Moksha River based on paleochannels’ parameters.</p><p>We studied both large and small palaeochannels to reconstruct palaeohydrology and history of the Moksha River valley development in Late Pleistocene. Large palaeochannels correspond to the time of high river runoff. The oldest ones of small palaeochannels were studied to know the time of lowering of the river runoff. Presumably, large palaeochannels were formed at the end of Late Glacial (after LGM) when river runoff was much higher than the modern one. This period of extremely high runoff was previously distinguished in many river valleys of East European Plain, where formation of large paleochannels is usually associated with Late Glacial (the end of MIS 2). Lowering of runoff on the central part of the East European Plain is usually associated with the beginning of the Holocene.</p><p>This study is supported by Russian Science Foundation (Project № 19-17-00215).</p>


1985 ◽  
Vol 31 (108) ◽  
pp. 143-149 ◽  
Author(s):  
Douglas W. Burbank ◽  
Monique B. Fort

AbstractIn the north-western Himalaya, the distribution of modem glaciers and snowlines in the Ladakh and Zanskar Ranges adjacent to the Indus River valley suggests comparable climatic conditions prevail in the two ranges. Similarly, the positions of terminal moraines and reconstructed equilibrium-line altitudes (ELAs) indicate equivalent magnitudes of Neoglacial and Late Glacial advances in both ranges. However, the terminal positions and reconstructed ELAs from the late Pleistocene maximum advances are at least 400 m lower in the Ladakh Range than in the nearby Zanskar Range. These differences do not appear to reflect either climatic or tectonic controls. Rather, they are caused by an unusual bedrock configuration in the Zanskar Range, where vertical strata of indurated sandstones and conglomerates, and narrow steep-walled canyons cut through them, created a bulwark that effectively precluded significant down-valley advance. Without recognition of this physical impedance to glacial advance, uncritical reconstructions would greatly overestimate the altitude of the ELA in the Zanskar Range.


Sign in / Sign up

Export Citation Format

Share Document