cold episode
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 2)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
pp. 1-32

Abstract Anticyclonic anomaly over Ural, or Ural High (UH), has recently received much attention as a factor related to weather anomalies across Eurasia. Here we studied how UH affects the occurrence of cold wintertime episodes over Eastern Europe and Northern China. By employing three methods to identify UH, we found that a method based on the sea level pressure anomaly captures a stronger cooling signal over Eastern Europe and this method includes non-blocking cases associated with low-level anticyclones that do not affect the upper troposphere. However, under the occurrence of UH, a stronger cooling over Northern China is detected by a method based on 500-hPa geopotential height fields. Cold events over Eastern Europe typically occur when UH formation was associated with a Rossby wave breaking in the upper level. Our results show that the horizontal temperature advection plays an important role in formation of cold episodes both in Eastern Europe and Northern China. The advection is balanced by diabatic processes, which show an opposite sign to the temperature advection in both regions. Also adiabatic warming contributes to balancing the advection in Northern China. We find that the exact location of the positive SLP anomaly during UH is the most important factor controlling whether or not Eastern Europe or Northern China will experience a cold episode. If the positive SLP anomaly develops more northwest than usual, Eastern Europe will experience a cold episode. When the anomaly moves eastward, Northern China will be cold.


2020 ◽  
Vol 6 (9) ◽  
pp. eaay2935 ◽  
Author(s):  
T. Pico ◽  
J. X. Mitrovica ◽  
A. C. Mix

During the Last Glacial Maximum, expansive continental ice sheets lowered globally averaged sea level ~130 m, exposing a land bridge at the Bering Strait. During the subsequent deglaciation, sea level rose rapidly and ultimately flooded the Bering Strait, linking the Arctic and Pacific Oceans. Observational records of the Bering Strait flooding have suggested two apparently contradictory scenarios for the timing of the reconnection. We reconcile these enigmatic datasets using gravitationally self-consistent sea-level simulations that vary the timing and geometry of ice retreat between the Laurentide and Cordilleran Ice Sheets to the southwest of the Bering Strait to fit observations of a two-phased flooding history. Assuming the datasets are robust, we demonstrate that their reconciliation requires a substantial melting of the Cordilleran and western Laurentide Ice Sheet from 13,000 to 11,500 years ago. This timing provides a freshwater source for the widely debated Younger Dryas cold episode (12,900 to 11,700 years ago).


2017 ◽  
Vol 88 (2) ◽  
pp. 327-344 ◽  
Author(s):  
Marco Benvenuti ◽  
Jean-Jacques Bahain ◽  
Chiara Capalbo ◽  
Chiara Capretti ◽  
Francesco Ciani ◽  
...  

AbstractWork on thermal pools at Poggetti Vecchi in Grosseto, Italy, exposed an up to 3-meter-thick succession of seven sedimentary units. Unit 2 in the lower portion of the succession contained vertebrate bones, mostly of the straight-tusked elephant, Palaeoloxodon antiquus, commingled with stone, bone, and wooden tools. Thermal carbonates overlying Unit 2 are radiometrically dated to the latter part of the middle Pleistocene. This time span indicates that early Neanderthals produced the human artifacts from Poggetti Vecchi. The elephant bones belong to seven individuals of different ages. Sedimentary facies analysis and paleoecological evidence suggest a narrow lacustrine-palustrine embayment affected by water-level fluctuations and, at times, by hydrothermal water. Cyclic lake-level variations were predominantly forced by the rapid climatic fluctuations that occurred at Marine Isotope Stage (MIS) 6–7 transition and throughout the MIS 6. Possibly an abrupt, intense, and protracted cold episode during the onset of MIS 6 led to the sudden death of the elephants, which formed an unexpected food resource for the humans of the area. The Poggetti Vecchi site adds new information on the behavioral plasticity and food procurement strategies that early Neanderthals were able to develop in Italy during the middle to the late Pleistocene transition.


2015 ◽  
Vol 28 (9) ◽  
pp. 3612-3623 ◽  
Author(s):  
Yi-Ting Yang ◽  
Hung-Chi Kuo ◽  
Eric A. Hendricks ◽  
Yi-Chin Liu ◽  
Melinda S. Peng

Abstract The typhoons with concentric eyewalls (CE) over the western North Pacific in different phases of the El Niño–Southern Oscillation (ENSO) between 1997 and 2012 are studied. They find a good correlation (0.72) between the annual CE typhoon number and the oceanic Niño index (ONI), with most of the CE typhoons occurring in the warm and neutral episodes. In the warm (neutral) episode, 55% (50%) of the typhoons possessed a CE structure. In contrast, only 25% of the typhoons possessed a CE structure in the cold episode. The CE formation frequency is also significantly different with 0.9 (0.2) CEs per month in the warm (cold) episode. There are more long-lived CE cases (CE structure maintained more than 20 h) and typhoons with multiple CE formations in the warm episodes. There are no typhoons with multiple CE formations in the cold episode. The warm episode CE typhoons generally have a larger size, stronger intensity, and smaller variation in convective activity and intensity. This may be due to the fact that the CE formation location is farther east in the warm episodes. Shifts in CE typhoon location with favorable conditions thus produce long-lived CE typhoons and multiple CE formations. The multiple CE formations may lead to expansion of the typhoon size.


2014 ◽  
Vol 82 (1) ◽  
pp. 209-221 ◽  
Author(s):  
Pierre-Henri Blard ◽  
Jérôme Lave ◽  
Kenneth A. Farley ◽  
Victor Ramirez ◽  
Nestor Jimenez ◽  
...  

AbstractThis work presents the first reconstruction of late Pleistocene glacier fluctuations on Uturuncu volcano, in the Southern Tropical Andes. Cosmogenic 3He dating of glacial landforms provides constraints on ancient glacier position between 65 and 14 ka. Despite important scatter in the exposure ages on the oldest moraines, probably resulting from pre-exposure, these 3He data constrain the timing of the moraine deposits and subsequent glacier recessions: the Uturuncu glacier may have reached its maximum extent much before the global LGM, maybe as early as 65 ka, with an equilibrium line altitude (ELA) at 5280 m. Then, the glacier remained close to its maximum position, with a main stillstand identified around 40 ka, and another one between 35 and 17 ka, followed by a limited recession at 17 ka. Then, another glacial stillstand is identified upstream during the late glacial period, probably between 16 and 14 ka, with an ELA standing at 5350 m. This stillstand is synchronous with the paleolake Tauca highstand. This result indicates that this regionally wet and cold episode, during the Heinrich 1 event, also impacted the Southern Altiplano. The ELA rose above 5450 m after 14 ka, synchronously with the Bolling–Allerod.


2002 ◽  
Vol 58 (3) ◽  
pp. 273-288 ◽  
Author(s):  
Michael Baales ◽  
Olaf Jöris ◽  
Martin Street ◽  
Felix Bittmann ◽  
Bernhard Weninger ◽  
...  

AbstractWithin a period of a few weeks toward the end of the Allerød Interstadial, the major Plinian eruption of the Laacher See volcano produced some 20 km3 of eruptiva, covering and preserving the late-glacial landscape in the German Central Rhineland over an area of more than 1000 km2. Correlation of terrestrial archives with the Greenland ice-core records and improved calibration of the radiocarbon timescale permit a precise, accurate age determination of the Laacher See event some 200 yr before the onset of the Younger Dryas cold episode. Carbonized trees and botanical macrofossils preserved by Laacher See Tephra permit detailed regional paleoenvironmental reconstruction and show that open woodland were typical for the cool and humid hemiboreal climatic conditions during the late Allerød. This woodland provided the habitat for a large variety of animal species, documented at both paleontological and Final Paleolithic archeological sites preserved below Laacher See deposits. Of special interest are numerous animal tracks intercalated in Middle Laacher See deposits at the south of the Neuwied Basin. This knowledge may help to evaluate possible supraregional impacts of this volcanic event on northern hemispheric environment and climate during the late Allerød.


2000 ◽  
Vol 54 (1) ◽  
pp. 38-48 ◽  
Author(s):  
Norbert Frank ◽  
Margarethe Braum ◽  
Ulrich Hambach ◽  
Augusto Mangini ◽  
Günther Wagner

Late-Quaternary travertine at two sites near Stuttgart formed entirely during interglacial periods. The travertine contains structures from growth induced by bacteria, and such structures have been dated by 230Th/U mass spectrometry. The resulting ages from both sites imply growth episodes of short duration, with growth rates up to 5 mm yr−1, at 99,800 ± 1300 yr B.P. (2σ n = 8) and 105,900 ± 1300 yr B.P. (2σ n = 7). These episodes were likely part of marine isotope stage (MIS) 5.3. Deposition of silt interrupted travertine growth at one of the sites ∼105,000 yr B.P. Likely correlatives of this silt are the St. Germain I-B stade recorded in the Grand Pile peat bog and a cold episode ∼1000 yr long recorded by δ18O values in the GRIP ice core. Travertine also formed during stage 5.5 (∼115,000 yr) and during the early Holocene. We found no evidence for travertine accumulation in stages 2, 3, 4, and 5.1. At both sites, the Sr/U ratio and the initial 234U/238U activity ratio resemble those of modern spring water. However, the sites differ in the chemical composition of spring water and in stratigraphic sequence of travertine accumulation.


1998 ◽  
Vol 79 (5s) ◽  
pp. S1-S50 ◽  
Author(s):  
Gerald D. Bell ◽  
Michael S. Halpert

The global climate during 1997 was affected by both extremes of the El Niño-Southern Oscillation (ENSO), with weak Pacific cold episode conditions prevailing during January and February, and one of the strongest Pacific warm episodes (El Niño) in the historical record prevailing during the remainder of the year. This warm episode contributed to major regional rainfall and temperature anomalies over large portions of the Tropics and extratropics, which were generally consistent with those observed during past warm episodes. In many regions, these anomalies were opposite to those observed during 1996 and early 1997 in association with Pacific cold episode conditions. Some of the most dramatic El Niño impacts during 1997 were observed in the Tropics, where anomalous convection was evident across the entire Pacific and throughout most major monsoon regions of the world. Tropical regions most affected by excessive El Niño–related rainfall during the year included 1) the eastern half of the tropical Pacific, where extremely heavy rainfall and strong convective activity covered the region from April through December; 2) equatorial eastern Africa, where excessive rainfall during October–December led to widespread flooding and massive property damage; 3) Chile, where a highly amplified and extended South Pacific jet stream brought increased storminess and above-normal rainfall during the winter and spring; 4) southeastern South America, where these same storms produced above-normal rainfall during June–December; and 5) Ecuador and northern Peru, which began receiving excessive rainfall totals in November and December as deep tropical convection spread eastward across the extreme eastern Pacific. In contrast, El Niño-–elated rainfall deficits during 1997 included 1) Indonesia, where significantly below-normal rainfall from June through December resulted in extreme drought and contributed to uncontrolled wildfires; 2) New Guinea, where drought contributed to large-scale food shortages leading to an outbreak of malnutrition; 3) the Amazon Basin, which received below-normal rainfall during June–December in association with substantially reduced tropical convection throughout the region; 4) the tropical Atlantic, which experienced drier than normal conditions during July–December; and 5) central America and the Caribbean Sea, which experienced below-normal rainfall during March–December. The El Niño also contributed to a decrease in tropical storm and hurricane activity over the North Atlantic during August–November, and to an expanded area of conditions favorable for tropical cyclone and hurricane formation over the eastern North Pacific. These conditions are in marked contrast to both the 1995 and 1996 hurricane seasons, in which significantly above-normal tropical cyclone activity was observed over the North Atlantic and suppressed activity prevailed across the eastern North Pacific. Other regional aspects of the short-term climate during 1997 included 1) wetter than average 1996/97 rainy seasons in both northeastern Australia and southern Africa in association with a continuation of weak cold episode conditions into early 1997; 2) below-normal rainfall and drought in southeastern Australia from October 1996 to December 1997 following very wet conditions in this region during most of 1996; 3) widespread flooding in the Red River Valley of the north-central United States during April following an abnormally cold and snowy winter; 4) floods in central Europe during July following several consecutive months of above-normal rainfall; 5) near-record to record rainfall in southeastern Asia during June–August in association with an abnormally weak upper-level monsoon ridge; and 6) near-normal rainfall across India during the Indian monsoon season (June–September) despite the weakened monsoon ridge.


Nature ◽  
1995 ◽  
Vol 377 (6548) ◽  
pp. 414-417 ◽  
Author(s):  
Tomasz Goslar ◽  
Maurice Arnold ◽  
Edouard Bard ◽  
Tadeusz Kuc ◽  
Mieczysław F. Pazdur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document