hunting strategies
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 39)

H-INDEX

29
(FIVE YEARS 2)

Mathematics ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 102
Author(s):  
Hernán Peraza-Vázquez ◽  
Adrián Peña-Delgado ◽  
Prakash Ranjan ◽  
Chetan Barde ◽  
Arvind Choubey ◽  
...  

This paper proposes a new meta-heuristic called Jumping Spider Optimization Algorithm (JSOA), inspired by Arachnida Salticidae hunting habits. The proposed algorithm mimics the behavior of spiders in nature and mathematically models its hunting strategies: search, persecution, and jumping skills to get the prey. These strategies provide a fine balance between exploitation and exploration over the solution search space and solve global optimization problems. JSOA is tested with 20 well-known testbench mathematical problems taken from the literature. Further studies include the tuning of a Proportional-Integral-Derivative (PID) controller, the Selective harmonic elimination problem, and a few real-world single objective bound-constrained numerical optimization problems taken from CEC 2020. Additionally, the JSOA’s performance is tested against several well-known bio-inspired algorithms taken from the literature. The statistical results show that the proposed algorithm outperforms recent literature algorithms and is capable to solve challenging real-world problems with unknown search space.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Hernán Peraza-Vázquez ◽  
Adrián F. Peña-Delgado ◽  
Gustavo Echavarría-Castillo ◽  
Ana Beatriz Morales-Cepeda ◽  
Jonás Velasco-Álvarez ◽  
...  

A novel bio-inspired algorithm, namely, Dingo Optimization Algorithm (DOA), is proposed for solving optimization problems. The DOA mimics the social behavior of the Australian dingo dog. The algorithm is inspired by the hunting strategies of dingoes which are attacking by persecution, grouping tactics, and scavenging behavior. In order to increment the overall efficiency and performance of this method, three search strategies associated with four rules were formulated in the DOA. These strategies and rules provide a fine balance between intensification (exploitation) and diversification (exploration) over the search space. The proposed method is verified using several benchmark problems commonly used in the optimization field, classical design engineering problems, and optimal tuning of a Proportional-Integral-Derivative (PID) controller are also presented. Furthermore, the DOA’s performance is tested against five popular evolutionary algorithms. The results have shown that the DOA is highly competitive with other metaheuristics, beating them at the majority of the test functions.


Animals ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2658
Author(s):  
Oliver Keuling ◽  
Egbert Strauß ◽  
Ursula Siebert

High wild boar population densities lead to demands for a population reduction to avoid crop damages or epidemic diseases. Along with biological studies, a better understanding of the human influence on wildlife and on wildlife management is important. We conducted inquiries on hunting methods and on hunters’ attitudes in the Federal State of Lower Saxony, Germany, to better understand hunting strategies and the influence on increasing wild boar population, as well as to underpin game management concepts. Single hunt, especially at bait, is still the most widely used method for hunting wild boar. The proportion of drive hunts within the hunting bag is increasing. The proportions of hunting methods vary regionally due to wild boar densities, geographical features (vegetation, terrain, etc.) and hunters’ practices. Hunters increased the proportion of conjoint hunts on wild boar. Baiting remains an important hunting method in wild boar management and the proportion of drive hunts should be fostered. Private hunting is important for wild boar management, although it is just insufficient. Additionally, administrative wildlife managers are recommended for the near future as coordinators of wild boar management, and as such, could manage hunting, the incorporation of regional conditions and investigating hunters’ attitudes and abilities.


Author(s):  
John M. Grunseich ◽  
Natalie M. Aguirre ◽  
Morgan N. Thompson ◽  
Jared G. Ali ◽  
Anjel M. Helms

AbstractChemical cues play important roles in predator–prey interactions. Semiochemicals can aid predator foraging and alert prey organisms to the presence of predators. Previous work suggests that predator traits differentially influence prey behavior, however, empirical data on how prey organisms respond to chemical cues from predator species with different hunting strategies, and how foraging predators react to cues from potential competitors, is lacking. Furthermore, most research in this area has focused on aquatic and aboveground terrestrial systems, while interactions among belowground, soiling-dwelling organisms have received relatively little attention. Here, we assessed how chemical cues from three species of entomopathogenic nematodes (EPNs), each with a different foraging strategy, influenced herbivore (cucumber beetle) and natural enemy (EPN) foraging behavior. We predicted these cues could serve as chemical indicators of increased predation risk, prey availability, or competition. Our findings revealed that foraging cucumber beetle larvae avoided chemical cues from Heterorhabditis bacteriophora (active-foraging cruiser EPNs), but not Steinernema carpocapsae (ambusher EPNs) or Steinernema riobrave (intermediate-foraging EPNs). In contrast, foraging H. bacteriophora EPNs were attracted to cues produced by the two Steinernema species but not conspecific cues. Notably, the three EPN species produced distinct blends of olfactory cues, with only a few semi-conserved compounds across species. These results indicate that a belowground insect herbivore responds differently to chemical cues from different EPN species, with some EPN species avoiding prey detection. Moreover, the active-hunting EPNs were attracted to heterospecific cues, suggesting these cues indicate a greater probability of available prey, rather than strong interspecific competition.


2021 ◽  
Vol 4 (3) ◽  
Author(s):  
Florian Sauer ◽  
Jonathan Schoenenberg

AbstractVisual conditions around Palaeolithic sites determine how the landscape was perceived by prehistoric hunter-gatherers. By placing the site in different landscapes, different visual foci were encoded in the locational characteristics of the different places. For the Early Ahmarian sites in the Levant, it can be shown that visual characteristics differ significantly with the combination of large ungulate prey exploited at the respective location. A Higuchi viewshed approach was combined with total viewsheds of the study area to introduce a human scale into the viewshed modelling. While diverse prey locations in the Mediterranean biome provide an overview over the landscape, specialised prey locations in the steppe biomes of the Irano-Turanian and Saharo-Arabian biome have their focus on the immediate vicinity of the sites. This correlates with the placement of sites in the context of highly humid environments which can be best exemplified with the site of Al-Ansab 1 in the escarpments of the Jordanian Rift Valley. Here, the environmental conditions acted as a magnet, focusing gazelles on the migration between different environments.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
D. G. E. Gomes ◽  
C. A. Toth ◽  
H. J. Cole ◽  
C. D. Francis ◽  
J. R. Barber

AbstractNatural sensory environments, despite strong potential for structuring systems, have been neglected in ecological theory. Here, we test the hypothesis that intense natural acoustic environments shape animal distributions and behavior by broadcasting whitewater river noise in montane riparian zones for two summers. Additionally, we use spectrally-altered river noise to explicitly test the effects of masking as a mechanism driving patterns. Using data from abundance and activity surveys across 60 locations, over two full breeding seasons, we find that both birds and bats avoid areas with high sound levels, while birds avoid frequencies that overlap with birdsong, and bats avoid higher frequencies more generally. We place 720 clay caterpillars in willows, and find that intense sound levels decrease foraging behavior in birds. For bats, we deploy foraging tests across 144 nights, consisting of robotic insect-wing mimics, and speakers broadcasting bat prey sounds, and find that bats appear to switch hunting strategies from passive listening to aerial hawking as sound levels increase. Natural acoustic environments are an underappreciated niche axis, a conclusion that serves to escalate the urgency of mitigating human-created noise.


2021 ◽  
pp. 1-10
Author(s):  
Antje Bauer ◽  
Karl Forchhammer

Predatory bacteria gained interest in the last 20 years. Nevertheless, only a few species are well characterized. The endobiotic predator <i>Bdellovibrio bacteriovorus</i> invades its prey to consume it from the inside, whereas <i>Myxococcus xanthus</i> hunts as a whole group to overcome its prey. Both species were described to prey on cyanobacteria as well. This minireview summarizes the findings of the last 20 years of predatory bacteria of cyanobacteria and is supplemented by new findings from a screening experiment for bacterial predators of the model organism <i>Anabaena variabilis</i> PCC 7937. Known predatory bacteria of cyanobacteria belong to the phyla Proteobacteria, Bacteroidetes, and Firmicutes and follow different hunting strategies. The underlying mechanisms are in most cases not known in much detail. Isolates from the screening experiment were clustered after predation behaviour and analyzed with respect to their size. The effect of predation in high nitrate levels and the occurrence of nitrogen-fixing cells, called heterocysts, are addressed.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11116
Author(s):  
Jean-Pierre Pallandre ◽  
Franck Lavenne ◽  
Eric Pellé ◽  
Grégory Breton ◽  
Mélina Ribaud ◽  
...  

Felidae species show a great diversity in their diet, foraging and hunting strategies, from small to large prey. Whether they belong to solitary or group hunters, the behavior of cats to subdue resisting small or large prey presents crucial differences. It is assumed that pack hunting reduces the per capita risk of each individual. We hypothesize that the sacroiliac articulation plays a key role in stabilizing the predator while subduing and killing prey. Using CT-scan from 59 felid coxal bones, we calculated the angle between both iliac articular surfaces. Correlation of this inter-iliac angle with body size was calculated and ecological stressors were evaluated on inter-iliac angle. Body size significantly influences inter-iliac angle with small cats having a wider angle than big cats. Arboreal species have a significantly larger angle compared to cursorial felids with the smallest value, and to scansorial and terrestrial species with intermediate angles. Felids hunting large prey have a smaller angle than felids hunting small and mixed prey. Within the Panthera lineage, pack hunters (lions) have a larger angle than all other species using solitary hunting strategy. According to the inter-iliac angle, two main groups of felids are determined: (i) predators with an angle of around 40° include small cats (i.e., Felis silvestris, Leopardus wiedii, Leptailurus serval, Lynx Canadensis, L. rufus; median = 43.45°), the only pack-hunting species (i.e., Panthera leo; median = 37.90°), and arboreal cats (i.e., L. wiedii, Neofelis nebulosa; median = 49.05°), (ii) predators with an angle of around 30° include solitary-hunting big cats (i.e., Acinonyx jubatus, P. onca, P. pardus, P. tigris, P. uncia; median = 31.80°). We suggest different pressures of selection to interpret these results. The tightening of the iliac wings around the sacrum probably enhances big cats’ ability for high speed and large prey control. In contrast, pack hunting in lions reduced the selective pressure for large prey.


2021 ◽  
Vol 9 ◽  
Author(s):  
Liam Joseph O’Reilly ◽  
Brogan John Harris ◽  
David John Lawrence Agassiz ◽  
Marc Wilhelm Holderied

Bats and moths provide a textbook example of predator-prey evolutionary arms races, demonstrating adaptations, and counter adaptations on both sides. The evolutionary responses of moths to the biosonar-led hunting strategies of insectivorous bats include convergently evolved hearing structures tuned to detect bat echolocation frequencies. These allow many moths to detect hunting bats and manoeuvre to safety, or in the case of some taxa, respond by emitting sounds which startle bats, jam their biosonar, and/or warn them of distastefulness. Until now, research has focused on the larger macrolepidoptera, but the recent discovery of wingbeat-powered anti-bat sounds in a genus of deaf microlepidoptera (Yponomeuta), suggests that the speciose but understudied microlepidoptera possess further and more widespread anti-bat defences. Here we demonstrate that wingbeat-powered ultrasound production, likely providing an anti-bat function, appears to indeed be spread widely in the microlepidoptera; showing that acoustically active structures (aeroelastic tymbals, ATs) have evolved in at least three, and likely four different regions of the wing. Two of these tymbals are found in multiple microlepidopteran superfamilies, and remarkably, three were found in a single subfamily. We document and characterise sound production from four microlepidopteran taxa previously considered silent. Our findings demonstrate that the microlepidoptera contribute their own unwritten chapters to the textbook bat-moth coevolutionary arms race.


Sign in / Sign up

Export Citation Format

Share Document