Linear Momentum, Kinetic Energy, and Angular Momentum

1915 ◽  
Vol 22 (6) ◽  
pp. 187
Author(s):  
E. B. Wilson
2001 ◽  
Vol 23 (2) ◽  
pp. 110-115
Author(s):  
Nguyen Van Khang

Using the definition for the partial derivative of a scalar in respect to the vector, this paper presents the relations between kinetic energy and linear momentum, angular momentum of the particle and of the rigid body. The obtained results are useful for the investigation of the dynamics of multibody systems


2003 ◽  
Vol 125 (4) ◽  
pp. 723-730
Author(s):  
H. Nilsson ◽  
L. Davidson

This work derives and applies a method for the investigation of numerical accuracy in computational fluid dynamics. The method is used to investigate discretization errors in computations of swirling flow in water turbines. The work focuses on the conservation of a subset of the angular momentum equations that is particularly important to swirling flow in water turbines. The method is based on the fact that the discretized angular momentum equations are not necessarily conserved when the discretized linear momentum equations are solved. However, the method can be used to investigate the effect of discretization on any equation that should be conserved in the correct solution, and the application is not limited to water turbines. Computations made for two Kaplan water turbine runners and a simplified geometry of one of the Kaplan runner ducts are investigated to highlight the general and simple applicability of the method.


2001 ◽  
Vol 377 (3) ◽  
pp. 868-897 ◽  
Author(s):  
V. Bujarrabal ◽  
A. Castro-Carrizo ◽  
J. Alcolea ◽  
C. Sánchez Contreras

2019 ◽  
Vol 91 (8) ◽  
pp. 1147-1155 ◽  
Author(s):  
Xiaofeng Liu ◽  
Bangzhao Zhou ◽  
Boyang Xiao ◽  
Guoping Cai

Purpose The purpose of this paper is to present a method to obtain the inertia parameter of a captured unknown space target. Design/methodology/approach An inertia parameter identification method is proposed in the post-capture scenario in this paper. This method is to resolve parameter identification with two steps: coarse estimation and precise estimation. In the coarse estimation step, all the robot arms are fixed and inertia tensor of the combined system is first calculated by the angular momentum conservation equation of the system. Then, inertia parameters of the unknown target are estimated using the least square method. Second, in the precise estimation step, the robot arms are controlled to move and then inertia parameters are once again estimated by optimization method. In the process of optimization, the coarse estimation results are used as an initial value. Findings Numerical simulation results prove that the method presented in this paper is effective for identifying the inertia parameter of a captured unknown target. Practical implications The presented method can also be applied to identify the inertia parameter of space robot. Originality/value In the classic momentum-based identification method, the linear momentum and angular momentum of system, both considered to be conserved, are used to identify the parameter of system. If the elliptical orbit in space is considered, the conservation of linear momentum is wrong. In this paper, an identification based on the conservation of angular momentum and dynamics is presented. Compared with the classic momentum-based method, this method can get a more accurate identification result.


1998 ◽  
Vol 65 (3) ◽  
pp. 719-726 ◽  
Author(s):  
S. Djerassi

This paper is the third in a trilogy dealing with simple, nonholonomic systems which, while in motion, change their number of degrees-of-freedom (defined as the number of independent generalized speeds required to describe the motion in question). The first of the trilogy introduced the theory underlying the dynamical equations of motion of such systems. The second dealt with the evaluation of noncontributing forces and of noncontributing impulses during such motion. This paper deals with the linear momentum, angular momentum, and mechanical energy of these systems. Specifically, expressions for changes in these quantities during imposition and removal of constraints are formulated in terms of the associated changes in the generalized speeds.


1987 ◽  
Vol 115 ◽  
pp. 384-384
Author(s):  
S. Hinata

There is a simple relationship among moment of inertia I, rotational kinetic energy K, and momentum L given by (David Layzer, private communication), 2IK ≧ L. During the Hayashi phase a rotating protostar will amplify the trapped magnetic field by a dynamo-like process. Since the rotation is expected to be fast, many unstable modes will be excited and will grow exponentially in time until some nonlinear processes saturate the amplitude. However, it may happen that the reduction in rotational kinetic energy becomes so large that without increasing the moment of inertia the inequality given above may not be satisfied. The only way to increase the moment of inertia is to move the mass outward. This can be done by transferring the angular momentum outward through the magnetic field. So we will have a fast rotating mass shell at the outer edge of the star. Further transfer of angular momentum will push the shell against the accretion disk; the moving masses of the disk will divert the mass flow along the background magnetic field which extends perpendicular to the accretion disk. This results in the hollow cone jets from both poles because the outward motion is primarily on the equatorial plane.


1961 ◽  
Vol 16 (6) ◽  
pp. 583-598 ◽  
Author(s):  
F. B. Malik ◽  
E. Trefftz

The ionization cross-section of highly ionized oxygen, O4+, is calculated according to the “distorted-wave” method. Exchange between the scattered and the ejected electron is taken into account as far as it is of long range nature. It is shown that contributions of high total angular momentum L are essential, L=0 giving only 3% of the total cross-section. This result should qualitatively be the same for all highly ionized atoms, whereas the following seems to be a special feature of O V ionization: for energies around twice the ionization energy the contributions of the optically allowed transitions of the ejected electron (angular momentum lej=1) are relatively small. The contributions of lej =0, 1, 2 and 3 are about 16%, 18%, 24% and 19% respectively for E=20.13.6 eV=2.39 × Ionization energy. The maximum cross section is 0.112 at. u. = 0.31 ·10-18 cm2 for electrons of 310 eV kinetic energy (2.8 × ionization energy). It is about twice as large as given by the ELWERT formula.


Sign in / Sign up

Export Citation Format

Share Document