scholarly journals Evaluating the Efficacy of Entomopathogenic Nematodes for the Biological Control of Crop Pests: A Nonequilibrium Approach

2001 ◽  
Vol 158 (4) ◽  
pp. 408
Author(s):  
Fenton ◽  
Norman ◽  
Fairbairn ◽  
Hudson
2001 ◽  
Vol 158 (4) ◽  
pp. 408-425 ◽  
Author(s):  
A. Fenton ◽  
R. Norman ◽  
J. P. Fairbairn ◽  
P. J. Hudson

Author(s):  
Maguintontz Cedney Jean-Baptiste ◽  
Andressa Lima de Brida ◽  
Daniel Bernardi ◽  
Sérgio da Costa Dias ◽  
Juliano de Bastos Pazini ◽  
...  

Abstract The Mediterranean fruit fly Ceratitis capitata (Wiedemann, 1824) (Diptera: Tephritidae) is among the main pests of fruit crops worldwide. Biological control using entomopathogenic nematodes (EPNs) may be an alternative to suppress populations of this pest. Thus, the aim of this study was to evaluate the pathogenicity and virulence of six EPN isolates (Heterorhabditis bacteriophora HB, H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47, and S. brazilense IBCB-n06) against C. capitata pupae. The compatibility of EPNs with different chemical insecticides that are registered for management of C. capitata was also assessed. Isolates of H. bacteriophora HB and S. brazilense IBCB-n06 at a concentration of 1,000 infective juveniles (IJ)/ml proved to be most pathogenic to C. capitata (70 and 80% mortality, respectively). In contrast, the isolates H. amazonensis IBCB-n24, Steinernema carpocapsae IBCB-n02, S. rarum PAM-25, S. glaseri IBCB-n47 provided pupal mortality of less than 60%. Bioassays to determine lethal concentrations indicated that concentrations of 600 IJ/ml (H. bacteriophora HB) and 1,000 IJ/ml (S. brazilense IBCB-n06) showed the highest virulence against C. capitata pupae. In contrast, the highest numbers of IJs emerged at concentrations of 1,200 and 200 IJ/ml. In compatibility bioassays, malathion, spinetoram, phosmet, acetamiprid, and novaluron were considered compatible with and harmless (Class 1) to H. bacteriophora HB and S. brazilense IBCB-n06, according to IOBC/WPRS. This information is important for implementing integrated management programs for C. capitata, using biological control with EPNs, whether alone or in combination with chemical insecticides.


2011 ◽  
Vol 35 (6) ◽  
pp. 1149-1156 ◽  
Author(s):  
Viviane Santos ◽  
Alcides Moino Junior ◽  
Vanessa Andaló ◽  
Camila Costa Moreira ◽  
Ricardo Alves de Olinda

Entomopathogenic nematodes (EPNs) are used in biological control of soil insects and show promise in the control of D. speciosa. The objective of this work was to evaluate the potential of native and exotic entomopathogenic nematode isolates in the control of D. speciosa under laboratory and greenhouse conditions. Results showed that all of EPNs caused larval mortality. The most virulent were Heterorhabditis sp. RSC01 (94%), Steinernema glaseri (84%), Heterorhabditis sp. JPM04 (82%) and Heterorhabditis amazonensis RSC05 (78%). There was no effect of the Heterorhabditis sp. RSC01 and S. glaseri isolates on eggs. The maximum mortality of D. speciosa larvae by Heterorhabditis sp. RSC01 was observed at a concentration of 300 IJ/ insect, while by S. glaseri observed the highest mortality at the concentration of 200 IJ/ insect. The Heterorhabditis sp. RSC01 isolate caused over 80% pupal mortality at a concentration of 250 IJ/insect. The virulence of Heterorhabditis sp. RSC01 and S. glaseri was affected by temperature. The Heterorhabditis sp. RSC01 isolate caused reduction in larva survival under greenhouse conditions at all of the tested concentrations and there was no difference in mortality among different concentrations of infectid juveniles.


2018 ◽  
Vol 25 (4) ◽  
Author(s):  
V. O. Martynov

Crop pests are the cause of economic damage in many developing countries, including Ukraine, where annual loss of crop harvest on average equals 6 million tons, valued at 840 million dollars. Pests consume grain, causing its pollution and creating favorable conditions for development of mold, which significantly decreases the food and seeding properties of grain and products of its processing. This article presents basic data on biological control and its advantages, demonstrates the variety of natural enemies of the pest beetles, which are used in biological control, analyses studies of the biological control of main crop pests and products of its processing belonging to the families Curculionidae and Tenebrionidae, and also the role of competition in  biological control. The analysis of studies on the effectiveness of different natural enemies of the main crop pest-beetles shows that the most studied parasites are Sitophilus granarius, S. zeamais, Tribolium confusum, T. castaneum, Oryzaephilus surinamensis, Rhyzopertha dominica, Acanthoscelides obtectus and Callosobruchus maculatus. Natural enemies of the rest of the species are poorly studied, and there is no data on Caulophilus latinasus, Tenebroides mauritanicus, Dermestes lardarius, Ptinus fur and Bruchidius incarnatus. The most commonly used natural enemies are Xylocoris flavipes, Anisopteromalus calandrae, the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana, and also nematodes of the Steinernema and Heterorhabditis genera. Despite the broad spectrum of natural enemies of the main pests of the grain supply, it is necessary to further study the parasites of every species of beetle which causes economic damage. Using biological control is the most promising method against pests of crops and products of its processing, which meets the current requirements to the sanitary-ecological condition of agricultural production.


Sign in / Sign up

Export Citation Format

Share Document