scholarly journals Parasites of beetles which are pests of grain and products of its processing

2018 ◽  
Vol 25 (4) ◽  
Author(s):  
V. O. Martynov

Crop pests are the cause of economic damage in many developing countries, including Ukraine, where annual loss of crop harvest on average equals 6 million tons, valued at 840 million dollars. Pests consume grain, causing its pollution and creating favorable conditions for development of mold, which significantly decreases the food and seeding properties of grain and products of its processing. This article presents basic data on biological control and its advantages, demonstrates the variety of natural enemies of the pest beetles, which are used in biological control, analyses studies of the biological control of main crop pests and products of its processing belonging to the families Curculionidae and Tenebrionidae, and also the role of competition in  biological control. The analysis of studies on the effectiveness of different natural enemies of the main crop pest-beetles shows that the most studied parasites are Sitophilus granarius, S. zeamais, Tribolium confusum, T. castaneum, Oryzaephilus surinamensis, Rhyzopertha dominica, Acanthoscelides obtectus and Callosobruchus maculatus. Natural enemies of the rest of the species are poorly studied, and there is no data on Caulophilus latinasus, Tenebroides mauritanicus, Dermestes lardarius, Ptinus fur and Bruchidius incarnatus. The most commonly used natural enemies are Xylocoris flavipes, Anisopteromalus calandrae, the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana, and also nematodes of the Steinernema and Heterorhabditis genera. Despite the broad spectrum of natural enemies of the main pests of the grain supply, it is necessary to further study the parasites of every species of beetle which causes economic damage. Using biological control is the most promising method against pests of crops and products of its processing, which meets the current requirements to the sanitary-ecological condition of agricultural production.

2021 ◽  
Vol 58 (04) ◽  
pp. 1161-1167
Author(s):  
Khurram Mahmood Sultan Kamboh

The herein reported study was conducted to evaluate the parasitic potential of Anisopteromalus calandrae (Howard) against larvae of Callosobruchus maculatus (F.), Rhyzopertha dominica (F.) and Sitophilus oryzae (L.) while, adult pests on the food medium treated with two formulations of diatomaceous earth (DE); Marine (Celite) and fresh water (Perma Guard) as grain protectants. The DE was applied at three dose rates i.e., 200, 400 and 600 ppm, at 25°C temperature and 65% relative humidity. Mortality and emergence of adults of tested insects and parasitoid were observed after 14 and 28 days of exposure respectivly. The highest mortality of C. maculatus was 43.37% against higher dose of Perma Guard (600 ppm) while the maximum mortality of S. oryzae was recorded 39.56% on application of Celite (600 ppm). The maximum mortality of A. calandrae parasitoid was observed 66.86% in S. oryzae infested grains treated with higher dose of Perma Guard (600 ppm), while 63.81% mortality of parasitoid was observed in S. oryzae infested grains at higher dose of Celite DE (600 ppm). The Perma Guard effectively controls population of tested insect’s mortality than the Celite. The highest emergence of C maculatus observed was 62.44% at lower dose of 200 ppm of Perma Guard DE while the highest emergence recorded on application of Celite was 60.66% from C. maculatus. The highest emergence of A. calandrae was 65.65% from S. oryzae at lower dose of 200 ppm of Perma Guard DE while the highest emergence of parasitoid recorded on application of Celite was found 60.66% at lower dose of 200 ppm from C maculatus. The emergence of tested insects and parasitoid increased with the decrease in dose rate of DE in most of the tested combinations. Higher dose (600 ppm) of both DE (Celite and Perma Guard) used in experiment showed mortality of tested insects and parasitoid activity of Anisopteromalus calandrae and furthermore release of A. calandrae on host insects would be adversely affected by use of diatomaceous earth product on stored grains. The experiments were carried out in laboratory of Grain Research, Training and Storage Management cell, Department of Entomology, University of Agriculture Faisalabad.


Insects ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 267 ◽  
Author(s):  
Jetske de Boer ◽  
Jeffrey Harvey

Global climate change is resulting in a wide range of biotic responses, including changes in diel activity and seasonal phenology patterns, range shifts polewards in each hemisphere and/or to higher elevations, and altered intensity and frequency of interactions between species in ecosystems. Oak (Thaumetopoea processionea) and pine (T. pityocampa) processionary moths (hereafter OPM and PPM, respectively) are thermophilic species that are native to central and southern Europe. The larvae of both species are gregarious and produce large silken ‘nests’ that they use to congregate when not feeding. During outbreaks, processionary caterpillars are capable of stripping foliage from their food plants (oak and pine trees), generating considerable economic damage. Moreover, the third to last instar caterpillars of both species produce copious hairs as a means of defence against natural enemies, including both vertebrate and invertebrate predators, and parasitoids. These hairs contain the toxin thaumetopoein that causes strong allergic reactions when it comes into contact with human skin or other membranes. In response to a warming climate, PPM is expanding its range northwards, while OPM outbreaks are increasing in frequency and intensity, particularly in northern Germany, the Netherlands, and southern U.K., where it was either absent or rare previously. Here, we discuss how warming and escape from co-evolved natural enemies has benefitted both species, and suggest possible strategies for biological control.


2019 ◽  
Vol 48 (4) ◽  
pp. 894-902 ◽  
Author(s):  
A E Iskra ◽  
J L Woods ◽  
D H Gent

Abstract The twospotted spider mite (Tetranychus urticae Koch) is a common pest in agricultural and ornamental crops. This pest can be controlled by resident predatory arthropods in certain situations. This research quantified the stability and resiliency of established conservation biological control of the twospotted spider mite in hop over a 5-yr period associated with nitrogen fertilization rate and use of a broad-spectrum insecticide. Biological control generally was stable and resilient over a sixfold range of nitrogen fertilization rates, and in only 1 of 5 yr did elevated nitrogen rates significantly affect populations of spider mites. In contrast, one application of the insecticide bifenthrin was associated with disruption of biological control and a severe outbreak of spider mites. The complex of natural enemies suppressed the outbreak during the same year in which bifenthrin was applied, but only after populations of spider mites exceeded levels associated with economic damage. However, in the following year the system returned to an equilibrium state where spider mites were suppressed below economically damaging levels. Therefore, conservation biological control in hop appears stable and robust to factors such as nitrogen fertilization that increase reproductive rates of spider mites but may be sensitive to factors such as nonselective insecticides that are lethal to natural enemies. Conservation biological control can be considered resilient to a single use of a nonselective insecticide in the year following the application, but not within the year of application.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1118B-1118
Author(s):  
Brent Rowell ◽  
Nittayaporn Bunsong ◽  
Kosin Satthaporn ◽  
Sompian Phithamma ◽  
Charnnarong Doungsa-ard

Larvae of the diamondback moth (DBM), Plutella xylostella L. (Lepidoptera: Ypeunomutidae) and other crucifer pests cause severe economic damage to cabbage, Brassica oleracea L. var. capitata (Brassicaceae) and related vegetables in Thailand and elsewhere in Southeast Asia. Overuse of pesticides is a serious problem in most vegetable growing areas of the country. Six species of parasitoids were reared from DBM larvae and pupae collected in northern Thailand in 1989–90 and 2003–04. The larval parasitoid Cotesiaplutellae Kurdjumov (Braconidae) appears to be the most important parasitoid of DBM in Thailand; other native or naturalized parasitoids may play supplementary roles. These natural enemies can and should be conserved in well thought out, participatory IPM programs. Field experiments comparing local farmer practice (weekly sprays of synthetic pyrethroid insecticides) to a simple IPM protocol using Bt and neem demonstrated superior control and higher yields of undamaged cabbage from the IPM treatment. This information on DBM parasitoids and other natural enemies of crucifer pests has been developed into a poster and other extension materials currently used in national “training of trainer” (for vegetable IPM) programs throughout Thailand. Farmer-centered IPM programs focused on conservation of local DBM parasitoids and on greater implementation of biological control will help alleviate growing public concerns regarding the effects of pesticides on vegetable growers and consumers.


2020 ◽  
Vol 57 (No. 1) ◽  
pp. 47-58
Author(s):  
Karmen Stopar ◽  
Stanislav Trdan ◽  
Tomaž Bartol

Thrips can cause considerable economic damage. In order to reduce the use of agrochemicals research has also focused on different natural enemies. We used bibliometric mapping and visualization to understand the structure of this field. Articles from Web of Science as well as software Vosviewer were used. Analysis of co-occurrence of terms shows the principal research areas: transmission of viruses, chemical or biological control and new species. A third of articles refer to biological control. Visualizations reveal three major groups of beneficials: entomopathogens, parasitoids, and predators. Recently, attention has shifted mainly to predatory mites as biocontrol agents. Our analysis aims to make such information visually more explanatory with better overview of research directions.


EDIS ◽  
2017 ◽  
Vol 2017 (6) ◽  
Author(s):  
James P. Cuda ◽  
Patricia Prade ◽  
Carey R. Minteer-Killian

In the late 1970s, Brazilian peppertree, Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), was targeted for classical biological control in Florida because its invasive properties (see Host Plants) are consistent with escape from natural enemies (Williams 1954), and there are no native Schinus spp. in North America. The lack of native close relatives should minimize the risk of damage to non-target plants from introduced biological control agents (Pemberton 2000). [...]


Sign in / Sign up

Export Citation Format

Share Document