Recent results in information theory

1966 ◽  
Vol 3 (1) ◽  
pp. 1-93 ◽  
Author(s):  
Samuel Kotz

Information theory, in the strict sense, is a rapidly developing branch of probability theory originating from a paper by Claude E. Shannon in the Bell System Technical Journal in 1948,in which anew mathematical model ofcommunications systems was proposed and investigated.One of the central innovations of this model was in regarding the prime components of a communications system (the source of messages and the communication channel) as probabilistic entities. Shannon also proposed a quantitative measure of the amount of information based on his notion of entropy and proved the basic theorem of this theory concerning the possi bility of reliable transmission of information over a particular class of noisy channels.

1966 ◽  
Vol 3 (01) ◽  
pp. 1-93 ◽  
Author(s):  
Samuel Kotz

Information theory, in the strict sense, is a rapidly developing branch of probability theory originating from a paper by Claude E. Shannon in theBell System Technical Journalin 1948,in which anew mathematical model ofcommunications systems was proposed and investigated.One of the central innovations of this model was in regarding the prime components of a communications system (the source of messages and the communication channel) as probabilistic entities. Shannon also proposed a quantitative measure of the amount of information based on his notion of entropy and proved the basic theorem of this theory concerning the possi bility of reliable transmission of information over a particular class of noisy channels.


2020 ◽  
Vol 2020 (4) ◽  
pp. 76-1-76-7
Author(s):  
Swaroop Shankar Prasad ◽  
Ofer Hadar ◽  
Ilia Polian

Image steganography can have legitimate uses, for example, augmenting an image with a watermark for copyright reasons, but can also be utilized for malicious purposes. We investigate the detection of malicious steganography using neural networkbased classification when images are transmitted through a noisy channel. Noise makes detection harder because the classifier must not only detect perturbations in the image but also decide whether they are due to the malicious steganographic modifications or due to natural noise. Our results show that reliable detection is possible even for state-of-the-art steganographic algorithms that insert stego bits not affecting an image’s visual quality. The detection accuracy is high (above 85%) if the payload, or the amount of the steganographic content in an image, exceeds a certain threshold. At the same time, noise critically affects the steganographic information being transmitted, both through desynchronization (destruction of information which bits of the image contain steganographic information) and by flipping these bits themselves. This will force the adversary to use a redundant encoding with a substantial number of error-correction bits for reliable transmission, making detection feasible even for small payloads.


2015 ◽  
Vol 9 (1) ◽  
pp. 330-336 ◽  
Author(s):  
Jeff Burgess

Similar to Medicine, digital communication, information processing, and x-ray imaging have changed the face of dentistry. The incorporation of digital systems into medical and dental practice has necessitated development of a standard that allows reliable transmission of information between the devices taking the images, devices storing the images, and devices displaying the images. This standard is termed as DICOM. The following article briefly reviews how DICOM came about, how dentistry is involved, the various elements that are part of the DICOM system, and how DICOM is currently used in dentistry.


2020 ◽  
Vol 20 (15&16) ◽  
pp. 1261-1280
Author(s):  
Francisco Delgado ◽  
Carlos Cardoso-Isidoro

Indefinite causal order has introduced disruptive procedures to improve the fidelity of quantum communication by introducing the superposition of { orders} on a set of quantum channels. It has been applied to several well characterized quantum channels as depolarizing, dephasing and teleportation. This work analyses the behavior of a parametric quantum channel for single qubits expressed in the form of Pauli channels. Combinatorics lets to obtain affordable formulas for the analysis of the output state of the channel when it goes through a certain imperfect quantum communication channel when it is deployed as a redundant application of it under indefinite causal order. In addition, the process exploits post-measurement on the associated control to select certain components of transmission. Then, the fidelity of such outputs is analysed to characterize the generic channel in terms of its parameters. As a result, we get notable enhancement in the transmission of information for well characterized channels due to the combined process: indefinite causal order plus post-measurement.


2020 ◽  
pp. 464-490
Author(s):  
Miquel Feixas ◽  
Mateu Sbert

Around seventy years ago, Claude Shannon, who was working at Bell Laboratories, introduced information theory with the main purpose of dealing with the communication channel between source and receiver. The communication channel, or information channel as it later became known, establishes the shared information between the source or input and the receiver or output, both of which are represented by random variables, that is, by probability distributions over their possible states. The generality and flexibility of the information channel concept can be robustly applied to numerous, different areas of science and technology, even the social sciences. In this chapter, we will present examples of its application to select the best viewpoints of an object, to segment an image, and to compute the global illumination of a three-dimensional virtual scene. We hope that our examples will illustrate how the practitioners of different disciplines can use it for the purpose of organizing and understanding the interplay of information between the corresponding source and receiver.


1998 ◽  
Vol 08 (04) ◽  
pp. 647-659 ◽  
Author(s):  
Martin Hasler

An overview over the methods currently under investigation for the transmission of information hidden in a chaotic signal is given. First, the notion of synchronization is discussed, then the coupling of two systems to achieve synchronization is presented and then four methods to mix the information signal with a chaotic carrier are described. Finally, the problem to send several information bearing chaotic signals through the same communication channel is posed as a challenge.


Author(s):  
David Sigtermans

We propose a novel tensor-based formalism for inferring causal structures from time series. An information theoretical analysis of transfer entropy (TE), shows that TE results from transmission of information over a set of communication channels. Tensors are the mathematical equivalents of these multi-channel causal channels. A multi-channel causal channel is a generalization of a discrete memoryless channel (DMC). We consider a DMC as a single-channel causal channel. Investigation of a system comprising three variables shows that in our formalism, bivariate analysis suffices to differentiate between direct and indirect relations. For this to be true, we have to combine the output of multi-channel causal channels with the output of single-channel causal channels. We can understand this result when we consider the role of noise. Subsequent transmission of information over noisy channels can never result in less noisy transmission overall. This implies that a Data Processing Inequality (DPI) exists for transfer entropy.


2019 ◽  
Vol 37 (4) ◽  
pp. 721-734 ◽  
Author(s):  
Rahul Devassy ◽  
Giuseppe Durisi ◽  
Guido Carlo Ferrante ◽  
Osvaldo Simeone ◽  
Elif Uysal

2015 ◽  
Vol 27 (6) ◽  
pp. 850-938 ◽  
Author(s):  
TOBIAS FRITZ

Resources and their use and consumption form a central part of our life. Many branches of science and engineering are concerned with the question of which given resource objects can be converted into which target resource objects. For example, information theory studies the conversion of a noisy communication channel instance into an exchange of information. Inspired by work in quantum information theory, we develop a general mathematical toolbox for this type of question. The convertibility of resources into other ones and the possibility of combining resources is accurately captured by the mathematics of ordered commutative monoids. As an intuitive example, we consider chemistry, where chemical reaction equations such as\mathrm{2H_2 + O_2} \lra \mathrm{2H_2O,}are concerned both with a convertibility relation ‘→’ and a combination operation ‘+.’ We study ordered commutative monoids from an algebraic and functional-analytic perspective and derive a wealth of results which should have applications to concrete resource theories, such as a formula for rates of conversion. As a running example showing that ordered commutative monoids are also of purely mathematical interest without the resource-theoretic interpretation, we exemplify our results with the ordered commutative monoid of graphs.While closely related to both Girard's linear logic and to Deutsch's constructor theory, our framework also produces results very reminiscent of the utility theorem of von Neumann and Morgenstern in decision theory and of a theorem of Lieb and Yngvason on the foundations of thermodynamics.Concerning pure algebra, our observation is that some pieces of algebra can be developed in a context in which equality is not necessarily symmetric, i.e. in which the equality relation is replaced by an ordering relation. For example, notions like cancellativity or torsion-freeness are still sensible and very natural concepts in our ordered setting.


Sign in / Sign up

Export Citation Format

Share Document