On the continuity and the positivity of the finite part of the limit distribution of an irregular branching process with infinite mean

1980 ◽  
Vol 17 (3) ◽  
pp. 696-703 ◽  
Author(s):  
H. Cohn ◽  
H.-J. Schuh

It is shown that the limiting random variable W(si) of an irregular branching process with infinite mean, defined in [5], has a continuous and positive distribution on {0 < W(si) < ∞}. This implies that for all branching processes (Zn) with infinite mean there exists a function U such that the distribution of V = limnU(Zn)e–n a.s. is continuous, positive and finite on the set of non-extinction. A kind of law of large numbers for sequences of independent copies of W(si) is derived.

1980 ◽  
Vol 17 (03) ◽  
pp. 696-703 ◽  
Author(s):  
H. Cohn ◽  
H.-J. Schuh

It is shown that the limiting random variable W(si ) of an irregular branching process with infinite mean, defined in [5], has a continuous and positive distribution on {0 &lt; W(si ) &lt; ∞}. This implies that for all branching processes (Zn ) with infinite mean there exists a function U such that the distribution of V = lim n U(Zn )e–n a.s. is continuous, positive and finite on the set of non-extinction. A kind of law of large numbers for sequences of independent copies of W(si ) is derived.


2020 ◽  
Vol 52 (4) ◽  
pp. 1127-1163
Author(s):  
Jie Yen Fan ◽  
Kais Hamza ◽  
Peter Jagers ◽  
Fima C. Klebaner

AbstractA general multi-type population model is considered, where individuals live and reproduce according to their age and type, but also under the influence of the size and composition of the entire population. We describe the dynamics of the population as a measure-valued process and obtain its asymptotics as the population grows with the environmental carrying capacity. Thus, a deterministic approximation is given, in the form of a law of large numbers, as well as a central limit theorem. This general framework is then adapted to model sexual reproduction, with a special section on serial monogamic mating systems.


2017 ◽  
Vol 54 (2) ◽  
pp. 569-587 ◽  
Author(s):  
Ollivier Hyrien ◽  
Kosto V. Mitov ◽  
Nikolay M. Yanev

Abstract We consider a class of Sevastyanov branching processes with nonhomogeneous Poisson immigration. These processes relax the assumption required by the Bellman–Harris process which imposes the lifespan and offspring of each individual to be independent. They find applications in studies of the dynamics of cell populations. In this paper we focus on the subcritical case and examine asymptotic properties of the process. We establish limit theorems, which generalize classical results due to Sevastyanov and others. Our key findings include a novel law of large numbers and a central limit theorem which emerge from the nonhomogeneity of the immigration process.


1977 ◽  
Vol 14 (2) ◽  
pp. 387-390 ◽  
Author(s):  
Harry Cohn

It is shown for a supercritical branching process with immigration that if the log moment of the immigration distribution is infinite, then no sequence of positive constants {cn} exists such that {Xn/cn} converges in law to a proper limit distribution function F, except for the case F(0 +) = 1. Seneta's result [1] combined with the above-mentioned one imply that if 1 < m < ∞ then the finiteness of the log moment of the immigration distribution is a necessary and sufficient condition for the existence of some constants {cn} such that {Xn/cn} converges in law to a proper limit distribution function F, with F(0 +) < 1.


2013 ◽  
Vol 50 (2) ◽  
pp. 576-591
Author(s):  
Jyy-I Hong

We consider a continuous-time, single-type, age-dependent Bellman-Harris branching process. We investigate the limit distribution of the point process A(t)={at,i: 1≤ i≤ Z(t)}, where at,i is the age of the ith individual alive at time t, 1≤ i≤ Z(t), and Z(t) is the population size of individuals alive at time t. Also, if Z(t)≥ k, k≥2, is a positive integer, we pick k individuals from those who are alive at time t by simple random sampling without replacement and trace their lines of descent backward in time until they meet for the first time. Let Dk(t) be the coalescence time (the death time of the last common ancestor) of these k random chosen individuals. We study the distribution of Dk(t) and its limit distribution as t→∞.


1982 ◽  
Vol 19 (03) ◽  
pp. 681-684 ◽  
Author(s):  
F. C. Klebaner ◽  
H.-J. Schuh

We show for a certain class of Galton–Watson branching processes in varying environments (Zn ) n that moments of the maximum random variable sup n Zn/Cn exist if and only if the same moments of lim nZn/Cn exist, where Cn is a sequence of suitable constants.


1998 ◽  
Vol 35 (03) ◽  
pp. 537-544
Author(s):  
Peter Olofsson

The xlogx condition is a fundamental criterion for the rate of growth of a general branching process, being equivalent to non-degeneracy of the limiting random variable. In this paper we adopt the ideas from Lyons, Pemantle and Peres (1995) to present a new proof of this well-known theorem. The idea is to compare the ordinary branching measure on the space of population trees with another measure, the size-biased measure.


1982 ◽  
Vol 14 (04) ◽  
pp. 732-751
Author(s):  
H.-J. Schuh

Let be a supercritical Bellman-Harris process with finite offspring mean. Cohn [17] has shown that there always exist constants Ct such that lim t→∞ Zt /Ct = W almost surely for some non-degenerate random variable W. In this paper we give an alternative proof, based on the study of (Zt ) as a point process. Our methods are to some extent analytical and parallel Seneta's [18] and Heyde's [11] approaches in the case of the Galton–Watson process. We further identify Ct as 1/(–log Ft (–1)(γ)), where Ft (γ) = E(γ z t), i.e. the norming constants found by Seneta [18] for the Galton–Watson process, apply also to the Bellman-Harris process. Finally we derive a weak law of large numbers for W, prove that W is continuous on (0,∞) and show that W has [0,∞) as its support.


1973 ◽  
Vol 10 (4) ◽  
pp. 739-747 ◽  
Author(s):  
P. J. Brockwell ◽  
W. H. Kuo

A supercritical age-dependent branching process is considered in which the lifespan of each individual is composed of four phases whose durations have joint probability density f(x1, x2, x3, x4). Starting with a single individual of age zero at time zero we consider the asymptotic behaviour as t→ ∞ of the random variable Z(4) (a0,…, an, t) defined as the number of individuals in phase 4 at time t for which the elapsed phase durations Y01,…, Y04,…, Yi1,…, Yi4,…, Yn4 of the individual itself and its first n ancestors satisfy the inequalities Yij ≦ aij, i = 0,…, n, j = 1,…, 4. The application of the results to the analysis of cell-labelling experiments is described. Finally we state an analogous result which defines (conditional on eventual non-extinction of the population) the asymptotic joint distribution of the phase and elapsed phase durations of an individual drawn at random from the population and the phase durations of its ancestors.


1973 ◽  
Vol 10 (1) ◽  
pp. 198-205 ◽  
Author(s):  
R. A. Doney

If Z(t) denotes the population size in a Bellman-Harris age-dependent branching process such that a non-denenerate random variable W, then it is known that E(W) = 1 and that ϕ (u) = E(e–uW) satisfies a well-known integral equation. In this situation Athreya [1] has recently found a NASC for E(W |log W| y) <∞, for γ > 0. This paper generalizes Athreya's results in two directions. Firstly a more general class of branching processes is considered; secondly conditions are found for E(W 1 + βL(W)) < ∞ for 0 β < 1, where L is one of a class of functions of slow variation.


Sign in / Sign up

Export Citation Format

Share Document