The passage from random walk to diffusion in quantum probability

1988 ◽  
Vol 25 (A) ◽  
pp. 151-166 ◽  
Author(s):  
K. R. Parthasarathy

The notion of a quantum random walk in discrete time is formulated and the passage to a continuous time diffusion limit is established. The limiting diffusion is described in terms of solutions of certain quantum stochastic differential equations.

1988 ◽  
Vol 25 (A) ◽  
pp. 151-166 ◽  
Author(s):  
K. R. Parthasarathy

The notion of a quantum random walk in discrete time is formulated and the passage to a continuous time diffusion limit is established. The limiting diffusion is described in terms of solutions of certain quantum stochastic differential equations.


1998 ◽  
Vol 28 (1) ◽  
pp. 77-93 ◽  
Author(s):  
Terence Chan

AbstractThis paper presents a continuous time version of a stochastic investment model originally due to Wilkie. The model is constructed via stochastic differential equations. Explicit distributions are obtained in the case where the SDEs are driven by Brownian motion, which is the continuous time analogue of the time series with white noise residuals considered by Wilkie. In addition, the cases where the driving “noise” are stable processes and Gamma processes are considered.


2008 ◽  
Vol 38 (02) ◽  
pp. 399-422 ◽  
Author(s):  
Eric C.K. Cheung ◽  
Steve Drekic

In the classical compound Poisson risk model, it is assumed that a company (typically an insurance company) receives premium at a constant rate and pays incurred claims until ruin occurs. In contrast, for certain companies (typically those focusing on invention), it might be more appropriate to assume expenses are paid at a fixed rate and occasional random income is earned. In such cases, the surplus process of the company can be modelled as a dual of the classical compound Poisson model, as described in Avanzi et al. (2007). Assuming further that a barrier strategy is applied to such a model (i.e., any overshoot beyond a fixed level caused by an upward jump is paid out as a dividend until ruin occurs), we are able to derive integro-differential equations for the moments of the total discounted dividends as well as the Laplace transform of the time of ruin. These integro-differential equations can be solved explicitly assuming the jump size distribution has a rational Laplace transform. We also propose a discrete-time analogue of the continuous-time dual model and show that the corresponding quantities can be solved for explicitly leaving the discrete jump size distribution arbitrary. While the discrete-time model can be considered as a stand-alone model, it can also serve as an approximation to the continuous-time model. Finally, we consider a generalization of the so-called Dickson-Waters modification in optimal dividends problems by maximizing the difference between the expected value of discounted dividends and the present value of a fixed penalty applied at the time of ruin.


2005 ◽  
Vol 05 (02) ◽  
pp. L291-L297 ◽  
Author(s):  
FRANCESCO MAINARDI ◽  
ALESSANDRO VIVOLI ◽  
RUDOLF GORENFLO

We consider the basic models for anomalous transport provided by the integral equation for continuous time random walk (CTRW) and by the time fractional diffusion equation to which the previous equation is known to reduce in the diffusion limit. We compare the corresponding fundamental solutions of these equations, in order to investigate numerically the increasing quality of approximation with advancing time.


1996 ◽  
Vol 33 (04) ◽  
pp. 1061-1076 ◽  
Author(s):  
P. E. Kloeden ◽  
E. Platen ◽  
H. Schurz ◽  
M. Sørensen

In this paper statistical properties of estimators of drift parameters for diffusion processes are studied by modern numerical methods for stochastic differential equations. This is a particularly useful method for discrete time samples, where estimators can be constructed by making discrete time approximations to the stochastic integrals appearing in the maximum likelihood estimators for continuously observed diffusions. A review is given of the necessary theory for parameter estimation for diffusion processes and for simulation of diffusion processes. Three examples are studied.


Author(s):  
Yakup Ari

The financial time series have a high frequency and the difference between their observations is not regular. Therefore, continuous models can be used instead of discrete-time series models. The purpose of this chapter is to define Lévy-driven continuous autoregressive moving average (CARMA) models and their applications. The CARMA model is an explicit solution to stochastic differential equations, and also, it is analogue to the discrete ARMA models. In order to form a basis for CARMA processes, the structures of discrete-time processes models are examined. Then stochastic differential equations, Lévy processes, compound Poisson processes, and variance gamma processes are defined. Finally, the parameter estimation of CARMA(2,1) is discussed as an example. The most common method for the parameter estimation of the CARMA process is the pseudo maximum likelihood estimation (PMLE) method by mapping the ARMA coefficients to the corresponding estimates of the CARMA coefficients. Furthermore, a simulation study and a real data application are given as examples.


Sign in / Sign up

Export Citation Format

Share Document