Critical Point Drying of Protozoan Cells and Other Biological Specimens for Scanning Electron Microscopy: Apparatus and Methods of Specimen Preparation

1974 ◽  
Vol 93 (1) ◽  
pp. 124 ◽  
Author(s):  
John J. Ruffolo
Author(s):  
Linda M. Sicko ◽  
Thomas E. Jensen

The use of critical point drying is rapidly becoming a popular method of preparing biological samples for scanning electron microscopy. The procedure is rapid, and produces consistent results with a variety of samples. The preservation of surface details is much greater than that of air drying, and the procedure is less complicated than that of freeze drying. This paper will present results comparing conventional air-drying of plant specimens to critical point drying, both of fixed and unfixed material. The preservation of delicate structures which are easily damaged in processing and the use of filter paper as a vehicle for drying will be discussed.


Author(s):  
T. Inoué ◽  
H. Koike

Low temperature scanning electron microscopy (LTSEM) is useful to avoid artifacts such as deformation and extraction, because specimens are not subjected to chemical fixation, dehydration and critical-point drying. Since Echlin et al developed a LTSEM, many techniques and instruments have been reported for observing frozen materials. However, intracellular structures such as mitochondria and endoplasmic reticulum have been unobservable by the method because of the low resolving power and inadequate specimen preparation methods. Recently, we developed a low temperature SEM that attained high resolutions. In this study, we introduce highly magnified images obtained by the newly developed LTSEM, especially intracellular structures which have been rapidly frozen without chemical fixation.[Specimen preparations] Mouse pancreas and brown adipose tissues (BAT) were used as materials. After the tissues were removed and cut into small pieces, the specimen was placed on a cryo-tip and rapidly frozen in liquid propane using a rapid freezing apparatus (Eiko Engineering Co. Ltd., Japan). After the tips were mounted on the specimen stage of a precooled cryo-holder, the surface of the specimen was manually fractured by a razor blade in liquid nitrogen. The cryo-holder was then inserted into the specimen chamber of the SEM (ISI DS-130), and specimens were observed at the accelerating voltages of 5-8 kV. At first the surface was slightly covered with frost, but intracellular structures were gradually revealed as the frost began to sublimate. Gold was then coated on the specimen surface while tilting the holder at 45-90°. The holder was connected to a liquid nitrogen reservoir by means of a copper braid to maintain low temperature.


1988 ◽  
Vol 8 (4) ◽  
pp. 443-444
Author(s):  
W. M. Hess ◽  
J. V. Allen ◽  
J. S. Gardner ◽  
Jay Reynolds

2006 ◽  
Vol 99 (4) ◽  
pp. 455-458 ◽  
Author(s):  
P. L. Sarmiento ◽  
María L. Ciarmela ◽  
P. Sánchez Thevenet ◽  
M. C. Minvielle ◽  
J. A. Basualdo

Author(s):  
Arthur L. Cohen ◽  
Gerald E. Garner

The surface forms and structures of animal cells have been strikingly preserved for scanning electron microscopy by freeze-drying and by critical point drying both by the method with CO2 used as the transitional fluid and the later procedure which uses a fluorocarbon (Freon 13) as a medium for the transition from the liquid to the gaseous environment. Freeze-drying is often prolonged (5-12 hours as compared with an hour or less by the critical point method) and in our experience with mold cultures on agar, the substrate shrivels and cracks and hyphal filaments are distorted.Despite, and possibly because of a flexible but inelastic cell wall, plant cells often show greater distortion than do animal cells after evaporative drying or replacement dehydration for mixrotechnical work. The animal cell membrane can contract more or less uniformly on drying - as shown by the numerous micrographs of well-preserved erythrocytes, while plant cell walls often crumple. The many scanning electron micrographs of partially collapsed pollen grains bear witness to this fact.


Sign in / Sign up

Export Citation Format

Share Document