Natural disturbance and tree species coexistence in an old-growth beech - dwarf bamboo forest, southwestern Japan

1995 ◽  
Vol 6 (6) ◽  
pp. 875-886 ◽  
Author(s):  
Shin-Ichi Yamamoto ◽  
Naoyuki Nishimura ◽  
Kiyoshi Matsui
2005 ◽  
Vol 14 (8) ◽  
pp. 2565-2575 ◽  
Author(s):  
Y. ASUKA ◽  
N. TOMARU ◽  
Y. MUNEHARA ◽  
N. TANI ◽  
Y. TSUMURA ◽  
...  

2021 ◽  
Vol 64 (1) ◽  
pp. 13-30
Author(s):  
Dan Gafta ◽  
Annik Schnitzler ◽  
Déborah Closset-Kopp ◽  
Vasile Cristea

Neighbourhood models are useful tools for understanding the role of positive and negative interactions in maintaining the tree species diversity in mixed forests. Under such a presumption, we aimed at testing several hypotheses concerning the mechanisms of autogenic species coexistence in an old-growth, beech-fir-spruce stand, which is part of the Slătioara forest reserve (Eastern Carpathians). Univariate/bivariate spatial point pattern analyses, the individual tree species-area relationship, the species mingling analysis and generalised linear mixed models of neighbour interference were applied on data concerning the position and allometry of all saplings and trees occurring within a 0.24 ha plot. The monospecific distribution of either beech or spruce saplings did not support the spatial segregation hypothesis. There was no evidence of conspecific negative distance dependence, as no spatial segregation was detected between the saplings and trees of any species. Within 4 m-neighbourhood, the beech saplings appeared as diversity accumulators, which might be indicative of indirect facilitation (e.g., herd protection hypothesis). At tree stage, none of the three species showed either accumulator or repeller patterns in their neighbourhood with respect to sapling species richness. Signals of positive and negative interspecific association were found in tree-sized beech (at scales of 10 to 20 m) and spruce (at scales of 4 to 17 m), respectively. The former, highly interspersed pattern is in accordance with the hypothesis of positive complementary effects, whereas the latter, poorly intermingled pattern is probably linked to the unexpected, positive neighbouring effect of spruce trees on the stem growth of their conspecific saplings. Such self-favouring process might be due to a facilitative below-ground mechanism. Conversely, the beech saplings were suppressed through interference from the neighbouring conspecific trees. The beech appears to be the key promoter of tree species coexistence in the study forest stand, in contrast to the low interspersion of spruce in the overstorey leading to lower local tree diversity.


2001 ◽  
Vol 31 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Charles D Canham ◽  
Michael J Papaik ◽  
Erika F Latty

Studies of wind disturbance regimes have been hampered by the lack of methods to quantify variation in both storm severity and the responses of tree species to winds of varying intensity. In this paper, we report the development of a new, empirical method of simultaneously estimating both local storm severity and the parameters of functions that define species-specific variation in susceptibility to windthrow as a function of storm severity and tree size. We test the method using data collected following a storm that struck the western Adirondack Mountains of New York in 1995. For intermediate-sized stems (e.g., 40 cm DBH), black cherry (Prunus serotina Ehrh.) and red spruce (Picea rubens Sarg.) showed the highest rates of windthrow across virtually all levels of storm severity, while yellow birch (Betula alleghaniensis Britt.) and sugar maple (Acer saccharum Marsh.) had the lowest rates of windthrow. For much of the range of storm severity, the probability of windthrow for the most susceptible species was at least twice as high as for the least susceptible species. Three of the species, yellow birch, red spruce, and beech (Fagus grandifolia Ehrh.), had significantly lower probability of windthrow at a given storm severity in old-growth stands than in second-growth stands. Our results suggest that the distinctive abundance of these three species in old-growth forests of the Adirondacks is due, at least in part, to their ability to survive the intermediate-scale disturbance events that appear to dominate the natural disturbance regime in this region.


2006 ◽  
Vol 223 (1-3) ◽  
pp. 303-317 ◽  
Author(s):  
Alan H. Taylor ◽  
Jang Shi Wei ◽  
Zhao Lian Jun ◽  
Liang Chun Ping ◽  
Miao Chang Jin ◽  
...  

2000 ◽  
Vol 16 (3) ◽  
pp. 387-415 ◽  
Author(s):  
Igor Debski ◽  
David F. R. P. Burslem ◽  
David Lamb

All stems ≥ 1 cm dbh were measured, tagged, mapped and identified on a 1-ha plot of rain forest at Gambubal State Forest, south-east Queensland, Australia. The spatial patterns and size class distributions of 11 common tree species on the plot were assessed to search for mechanisms determining their distribution and abundance. The forest was species-poor in comparison to many lowland tropical forests and the common species are therefore present at relatively high densities. Despite this, only limited evidence was found for the operation of density-dependent processes at Gambubal. Daphnandra micrantha saplings were clumped towards randomly spaced adults, indicating a shift of distribution over time caused by differential mortality of saplings in these adult associated clumps. Ordination of the species composition in 25-m × 25-m subplots revealed vegetation gradients at that scale, which corresponded to slope across the plot. Adult basal area was dominated by a few large individuals of Sloanea woollsii but the comparative size class distributions and replacement probabilities of the 11 common species suggest that the forest will undergo a transition to a more mixed composition if current conditions persist. The current cohort of large S. woollsii individuals probably established after a large-scale disturbance event and the forest has not attained an equilibrium species composition.


2021 ◽  
Author(s):  
Leszek Bartkowicz ◽  

The aim of the study was to compare a patch-mosaic pattern in the old-growth forest stands developed in various climate and soil conditions occurring in different regions of Poland. Based on the assumption, that the patch-mosaic pattern in the forest reflect the dynamic processes taking place in it, and that each type of forest ecosystem is characterized by a specific regime of natural disturbances, the following hypotheses were formulated: (i) the patches with a complex structure in stands composed of latesuccessional, shade-tolerant tree species are more common than those composed of early-successional, light-demanding ones, (ii) the patch-mosaic pattern is more heterogeneous in optimal forest site conditions than in extreme ones, (iii) in similar site conditions differentiation of the stand structure in distinguished patches is determined by the successional status of the tree species forming a given patch, (iv) the successional trends leading to changes of species composition foster diversification of the patch structure, (v) differentiation of the stand structure is negatively related to their local basal area, especially in patches with a high level of its accumulation. Among the best-preserved old-growth forest remaining under strict protection in the Polish national parks, nineteen research plots of around 10 ha each were selected. In each plot, a grid (50 × 50 m) of circular sample subplots (with radius 12,62 m) was established. In the sample subplots, species and diameter at breast height of living trees (dbh ≥ 7 cm) were determined. Subsequently, for each sample subplot, several numerical indices were calculated: local basal area (G), dbh structure differentiation index (STR), climax index (CL) and successional index (MS). Statistical tests of Kruskal- Wallis, Levene and Generalized Additive Models (GAM) were used to verify the hypotheses. All examined forests were characterized by a large diversity of stand structure. A particularly high frequency of highly differentiated patches (STR > 0,6) was recorded in the alder swamp forest. The patch mosaic in the examined plots was different – apart from the stands with a strongly pronounced mosaic character (especially subalpine spruce forests), there were also stands with high spatial homogeneity (mainly fir forests). The stand structure in the distinguished patches was generally poorly related to the other studied features. Consequently, all hypotheses were rejected. These results indicate a very complex, mixed pattern of forest natural dynamics regardless of site conditions. In beech forests and lowland multi-species deciduous forests, small-scale disturbances of the gap dynamics type dominate, which are overlapped with less frequent medium-scale disturbances. In more difficult site conditions, large-scale catastrophic disturbances, which occasionally appear in communities formed under the influence of gap dynamics (mainly spruce forests) or cohort dynamics (mainly pine forests), gain importance.


2002 ◽  
Vol 32 (9) ◽  
pp. 1562-1576 ◽  
Author(s):  
Gregory G McGee ◽  
Robin W Kimmerer

The objective of this study was to assess the influence of substrate heterogeneity on epiphytic bryophyte communities in northern hardwood forests of varying disturbance histories. Specifically, we compared bryophyte abundance (m2·ha–1) and community composition among partially cut; maturing, 90- to 100-year-old, even-aged; and old-growth northern hardwood stands in Adirondack Park, New York, U.S.A. Total bryophyte cover from 0 to 1.5 m above ground level on trees [Formula: see text]10 cm diameter at breast height (DBH) did not differ among the three stand types. However, bryophyte community composition differed among host tree species and among stand types. Communities in partially cut and maturing stands were dominated by xerophytic bryophytes (Platygyrium repens, Frullania eboracensis, Hypnum pallescens, Brachythecium reflexum, Ulota crispa), while old-growth stands contained a greater representation of calcicoles and mesophytic species (Brachythecium oxycladon, Anomodon rugelii, Porella platyphylloidea, Anomodon attenuatus, Leucodon brachypus, Neckera pennata). This mesophyte-calcicole assemblage occurred in all stand types but was limited by the abundance of large-diameter (>50 cm DBH), thick-barked, hardwood host trees (Acer saccharum Marsh., Tilia americana L., Fraxinus americana L.). This study suggested that epiphytic bryophyte diversity can be sustained and enhanced in managed northern hardwood forests by maintaining host tree species diversity and retaining large or old, thick-barked residual hardwood stems when applying even-aged and uneven-aged silviculture systems.


Sign in / Sign up

Export Citation Format

Share Document