scholarly journals Growth ofFagus sylvaticasaplings in an old-growth forest as affected by soil and light conditions

1997 ◽  
Vol 8 (6) ◽  
pp. 789-796 ◽  
Author(s):  
Jean-François Ponge ◽  
Jean-Baptiste Ferdy
2012 ◽  
Vol 42 (11) ◽  
pp. 1976-1982 ◽  
Author(s):  
Takayuki Ota ◽  
Takashi Masaki ◽  
Hisashi Sugita ◽  
Tatsuo Kanazashi ◽  
Hisashi Abe

In a natural forest that has experienced logging and lacks large fallen logs, cut stumps are expected to become a suitable substrate for regeneration. We investigated the properties of stumps that promoted the natural regeneration of coniferous species in a natural old-growth forest dominated by Cryptomeria japonica (L.f.) D. Don. A comparison of C. japonica saplings growing in three microsites (ground, stumps, and fallen logs) revealed that sapling density was highest on the stumps; 75% of saplings were distributed on stumps, which occupied only 3% of the projected forest area. The mortality of saplings during the 3-year study period did not differ significantly among the three microsites. Six properties of stumps were quantified: height, diameter at ground level, decay class, species taxon, type (i.e., cause of occurrence: logging or natural disturbance), and light conditions. Of these properties, the type of stump was the most influential. The density of saplings was significantly greater on stumps produced by logging than on naturally broken stumps. Taller stumps exhibited a significantly higher density of saplings; indeed, there were no saplings on stumps less than 60 cm in height. Saplings on stumps were concentrated in higher positions on the stump, and survivorship tended to be greater when their root location was higher. We concluded that the height of the microsite was an important factor for regeneration of C. japonica at this research site, where saplings were under competition with dense undergrowth vegetation. Most of the fallen logs were less than 60 cm in height and it appeared unlikely that they would function as regeneration sites for C. japonica.


2017 ◽  
Vol 7 (1-2) ◽  
pp. 73-107
Author(s):  
Orsolya Perger ◽  
Curtis Rollins ◽  
Marian Weber ◽  
Wiktor Adamowicz ◽  
Peter Boxall

2012 ◽  
Vol 163 (6) ◽  
pp. 240-246 ◽  
Author(s):  
Thomas A. Nagel ◽  
Jurij Diaci ◽  
Dusan Rozenbergar ◽  
Tihomir Rugani ◽  
Dejan Firm

Old-growth forest reserves in Slovenia: the past, present, and future Slovenia has a small number of old-growth forest remnants, as well as many forest reserves approaching old-growth conditions. In this paper, we describe some of the basic characteristics of these old-growth remnants and the history of their protection in Slovenia. We then trace the long-term development of research in these old-growth remnants, with a focus on methodological changes. We also review some of the recent findings from old-growth research in Slovenia and discuss future research needs. The conceptual understanding of how these forests work has slowly evolved, from thinking of them in terms of stable systems to more dynamic and unpredictable ones due to the influence of natural disturbances and indirect human influences. In accordance with this thinking, the methods used to study old-growth forests have changed from descriptions of stand structure to studies that address natural processes and ecosystem functions.


Nature ◽  
2021 ◽  
Vol 591 (7851) ◽  
pp. E21-E23
Author(s):  
Per Gundersen ◽  
Emil E. Thybring ◽  
Thomas Nord-Larsen ◽  
Lars Vesterdal ◽  
Knute J. Nadelhoffer ◽  
...  

2016 ◽  
Vol 13 (11) ◽  
pp. 3503-3517 ◽  
Author(s):  
Mianhai Zheng ◽  
Tao Zhang ◽  
Lei Liu ◽  
Weixing Zhu ◽  
Wei Zhang ◽  
...  

Abstract. Nitrogen (N) deposition is generally considered to increase soil nitrous oxide (N2O) emission in N-rich forests. In many tropical forests, however, elevated N deposition has caused soil N enrichment and further phosphorus (P) deficiency, and the interaction of N and P to control soil N2O emission remains poorly understood, particularly in forests with different soil N status. In this study, we examined the effects of N and P additions on soil N2O emission in an N-rich old-growth forest and two N-limited younger forests (a mixed and a pine forest) in southern China to test the following hypotheses: (1) soil N2O emission is the highest in old-growth forest due to the N-rich soil; (2) N addition increases N2O emission more in the old-growth forest than in the two younger forests; (3) P addition decreases N2O emission more in the old-growth forest than in the two younger forests; and (4) P addition alleviates the stimulation of N2O emission by N addition. The following four treatments were established in each forest: Control, N addition (150 kg N ha−1 yr−1), P addition (150 kg P ha−1 yr−1), and NP addition (150 kg N ha−1 yr−1 plus 150 kg P ha−1 yr−1). From February 2007 to October 2009, monthly quantification of soil N2O emission was performed using static chamber and gas chromatography techniques. Mean N2O emission was shown to be significantly higher in the old-growth forest (13.9 ± 0.7 µg N2O-N m−2 h−1) than in the mixed (9.9 ± 0.4 µg N2O-N m−2 h−1) or pine (10.8 ± 0.5 µg N2O-N m−2 h−1) forests, with no significant difference between the latter two. N addition significantly increased N2O emission in the old-growth forest but not in the two younger forests. However, both P and NP addition had no significant effect on N2O emission in all three forests, suggesting that P addition alleviated the stimulation of N2O emission by N addition in the old-growth forest. Although P fertilization may alleviate the stimulated effects of atmospheric N deposition on N2O emission in N-rich forests, this effect may only occur under high N deposition and/or long-term P addition, and we suggest future investigations to definitively assess this management strategy and the importance of P in regulating N cycles from regional to global scales.


1994 ◽  
Vol 24 (7) ◽  
pp. 1354-1368 ◽  
Author(s):  
Franco Biondi ◽  
Donald E. Myers ◽  
Charles C. Avery

Geostatistics provides tools to model, estimate, map, and eventually predict spatial patterns of tree size and growth. Variogram models and kriged maps were used to study spatial dependence of stem diameter (DBH), basal area (BA), and 10-year periodic basal area increment (BAI) in an old-growth forest stand. Temporal variation of spatial patterns was evaluated by fitting spatial stochastic models at 10-year intervals, from 1920 to 1990. The study area was a naturally seeded stand of southwestern ponderosa pine (Pinusponderosa Dougl. ex Laws. var. scopulorum) where total BA and tree density have steadily increased over the last decades. Our objective was to determine if increased stand density simply reduced individual growth rates or if it also altered spatial interactions among trees. Despite increased crowding, stem size maintained the same type of spatial dependence from 1920 to 1990. An isotropic Gaussian variogram was the model of choice to represent spatial dependence at all times. Stem size was spatially autocorrelated over distances no greater than 30 m, a measure of average patch diameter in this forest ecosystem. Because patch diameter remained constant through time, tree density increased by increasing the number of pine groups, not their horizontal dimension. Spatial dependence of stem size (DBH and BA) was always much greater and decreased less through time than that of stem increment (BAI). Spatial dependence of BAI was close to zero in the most recent decade, indicating that growth rates in 1980–1990 varied regardless of mutual tree position. Increased tree crowding corresponded not only to lower average and variance of individual growth rates, but also to reduced spatial dependence of BAI. Because growth variation was less affected by intertree distance with greater local crowding, prediction of individual growth rates benefits from information on horizontal stand structure only if tree density does not exceed threshold values. Simulation models and area estimates of tree performance in old-growth forests may be improved by including geostatistical components to summarize ecological spatial dependence.


2016 ◽  
Vol 46 (7) ◽  
pp. 914-923 ◽  
Author(s):  
Jonathan L.W. Ruppert ◽  
Marie-Josée Fortin ◽  
Eldon A. Gunn ◽  
David L. Martell

The fragmentation and loss of old-growth forest has led to the decline of many forest-dwelling species that depend on old-growth forest as habitat. Emblematic of this issue in many areas of the managed boreal forest in Canada is the threatened woodland caribou (Rangifer tarandus caribou (Gmelin, 1788)). We develop a methodology to help determine when and how timber can be harvested to best satisfy both industrial timber supply and woodland caribou habitat requirements. To start, we use least-cost paths based on graph theory to determine the configuration of woodland caribou preferred habitat patches. We then developed a heuristic procedure to schedule timber harvesting based on a trade-off between merchantable wood volume and the remaining amount of habitat and its connectivity during a planning cycle. Our heuristic can attain 84% of the potential woodland caribou habitat that would be available in the absence of harvesting at the end of a 100 year planning horizon. Interestingly, this is more than that which is attained by the current plan (50%) and a harvesting plan that targets high volume stands (32%). Our results indicate that our heuristic procedure (i.e., an ecologically tuned optimization approach) may better direct industrial activities to improve old-growth habitat while maintaining specified timber production levels.


Sign in / Sign up

Export Citation Format

Share Document