Long-Term Effects of Soil Fumigation and Inorganic Nutrient Addition on the Rhizoplane Mycoflora of Little Bluestem (Schizachyrium scoparium)

Mycologia ◽  
1992 ◽  
Vol 84 (6) ◽  
pp. 843 ◽  
Author(s):  
Partha Banerjee ◽  
Roger C. Anderson
2021 ◽  
Author(s):  
William Rickard ◽  
Marcos Paradelo Perez ◽  
Aurelie Bacq-Labreuil ◽  
Andy Neal ◽  
Xiaoxian Zhang ◽  
...  

<p>Soil organic matter is associated with important biological and physical functions. There are many theories to interpret this association, as yet there is not a fully developed understanding linking soil properties to nutritional management in arable systems.</p><p>We used X-ray computed tomography to analyse soil structure at the core and aggregate scale on the Broadbalk long term experiment (Hertfordshire, England). Here we present results of the treatments that have been under continuous wheat for 175 years. Corresponding to treatments that the only difference between the treatments is the nutrient management regime, with the exception of the baseline, or ‘wilderness’ treatment in which the plot was left unmanaged and has returned to mature woodland since 1882. The other nutrient treatments correspond to inorganic fertiliser addition with and without phosphorus, farmyard manure, and no added nutrient.</p><p>At core scale (40 µm resolution) we capture macro pore structures that are responsible for convective flow, while the aggregate scale images (1.5 µm resolution) include structures responsible for retention of water by capillary forces.  Therefore, a comparison of images taken at the two resolutions 1.5 µm and 40 µm provides information on how soil partitions between drainage and storage of water, and therefore on the air water balance under different environmental contexts.</p><p>The results are presented as a state-space plot of simulated permeability vs. porosity for each treatment. We find that nutrient management resulted in two distinct states at aggregate scale corresponding to water storage potential. Inorganic nutrient management resulted in structures of lower porosity and lower simulated permeability. There was no significant difference between each treatment, or between these treatments and the treatment with no nutrient addition. By comparison, the wilderness and manure treatments had higher porosity and higher permeability, with no significant difference between them.</p><p>At core scale, the results are slightly different. Again, the inorganic nutrient management treatments had lower porosity and simulated permeability, with no significant difference between them, and between them and the treatment with no nutrient addition. However, the manure treatment had a significantly lower porosity and permeability than the wilderness treatment. We conclude that long-term cultivation with organic nutrient management results in a similar capacity for water storage and transport to roots than a wilderness control, but that long-term management using a purely inorganic nutrient regime results in a smaller capacity for water storage and a lower transport rate to roots. Organic inputs, roots and plant detritus ploughed into the soil after harvest had no significant impact. Infiltration potential is highest in the wilderness control, lower for the manure treatment, and lowest for the inorganic nutrient management treatment. Again, inputs of organic nutrients from plants had no significant impact. We interpret these findings in terms of a previously hypothesised self-organising feedback loop between microbial activity and soil structure.</p>


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 521C-521
Author(s):  
A.W. McKeown ◽  
J.W. Potter ◽  
M. Gartshore ◽  
P. Carson

Because of the need to find plants that suppress root lesion nematodes for use in rotation or cover-crops, 16 native sand-prairie species were evaluated for host status for 6 years. Plants were grown on a Fox sand soil at a local prairie plant nursery. Soil cores were taken in the spring, summer, and fall and assayed for plant parasitic nematodes. Five species supported very low numbers (less than 100/kg soil) of root lesion nematodes. Brown-eyed Susan (Rudbeckia hirta) had no detectable nematodes for the duration. Switchgrass (Panicum virgatum L.) and Indiangrass (Sorghastrum nutans L., Nash) samples produced detectable nematodes on only two sampling dates over the 6 years and were statistically not different from brown-eyed Susan. Butterfly weed (Asclepias tuberosa L.) also had very low detectable nematodes as did sand dropseed [Sporobolus cryptandrus (Torr.) Gray.]. New Jersey tea (Ceanothus americanus L.), little bluestem [Schizachyrium scoparium (Michx.) Nash], and big bluestem (Andropogon gerardi Vitman) were poor hosts with <200 nematodes/kg soil. Mountain mint (Pycnanthemum virginianum L), wild bergamont (Monarda fistulosa L), horsemint (Monarda punctata L), and dwarf blazing star (Liatris cylindracea L) all had root lesion populations over 3000/kg soil. Horsemint and wild bergamont plants died out, possibly as a result of nematode infestation. Root lesion nematodes have an extremely wide host range in current agronomic and horticultural crops, and weeds and are difficult to manage using nonchemical means. Indiangrass, switchgrass, big bluestem, and little bluestem have all been used agriculturally for pastures and consequently have potential as beneficial long-term rotation crops for nematode management and soil building.


Author(s):  
T. M. Seed ◽  
M. H. Sanderson ◽  
D. L. Gutzeit ◽  
T. E. Fritz ◽  
D. V. Tolle ◽  
...  

The developing mammalian fetus is thought to be highly sensitive to ionizing radiation. However, dose, dose-rate relationships are not well established, especially the long term effects of protracted, low-dose exposure. A previous report (1) has indicated that bred beagle bitches exposed to daily doses of 5 to 35 R 60Co gamma rays throughout gestation can produce viable, seemingly normal offspring. Puppies irradiated in utero are distinguishable from controls only by their smaller size, dental abnormalities, and, in adulthood, by their inability to bear young.We report here our preliminary microscopic evaluation of ovarian pathology in young pups continuously irradiated throughout gestation at daily (22 h/day) dose rates of either 0.4, 1.0, 2.5, or 5.0 R/day of gamma rays from an attenuated 60Co source. Pups from non-irradiated bitches served as controls. Experimental animals were evaluated clinically and hematologically (control + 5.0 R/day pups) at regular intervals.


Author(s):  
D.E. Loudy ◽  
J. Sprinkle-Cavallo ◽  
J.T. Yarrington ◽  
F.Y. Thompson ◽  
J.P. Gibson

Previous short term toxicological studies of one to two weeks duration have demonstrated that MDL 19,660 (5-(4-chlorophenyl)-2,4-dihydro-2,4-dimethyl-3Hl, 2,4-triazole-3-thione), an antidepressant drug, causes a dose-related thrombocytopenia in dogs. Platelet counts started to decline after two days of dosing with 30 mg/kg/day and continued to decrease to their lowest levels by 5-7 days. The loss in platelets was primarily of the small discoid subpopulation. In vitro studies have also indicated that MDL 19,660: does not spontaneously aggregate canine platelets and has moderate antiaggregating properties by inhibiting ADP-induced aggregation. The objectives of the present investigation of MDL 19,660 were to evaluate ultrastructurally long term effects on platelet internal architecture and changes in subpopulations of platelets and megakaryocytes.Nine male and nine female beagle dogs were divided equally into three groups and were administered orally 0, 15, or 30 mg/kg/day of MDL 19,660 for three months. Compared to a control platelet range of 353,000- 452,000/μl, a doserelated thrombocytopenia reached a maximum severity of an average of 135,000/μl for the 15 mg/kg/day dogs after two weeks and 81,000/μl for the 30 mg/kg/day dogs after one week.


Sign in / Sign up

Export Citation Format

Share Document