Molecular Sequence Data Assess the Value of Morphological Characteristics for a Phylogenetic Classification of Species of Cintractia

Mycologia ◽  
1999 ◽  
Vol 91 (3) ◽  
pp. 485 ◽  
Author(s):  
Meike Piepenbring ◽  
Dominik Begerow ◽  
Franz Oberwinkler
Zootaxa ◽  
2021 ◽  
Vol 4920 (2) ◽  
pp. 151-199
Author(s):  
HIROSHI KAJIHARA

The nemertean order Monostilifera consists of 594 species in 127 genera and is distributed worldwide. Within the Monostilifera, two suborders have been recognized, Cratenemertea and Eumonostilifera. Within the latter, two, unranked clade names, Oerstediina and Amphiporina, were recently proposed without formal taxonomic definition. In this article, I give morphological circumscriptions and clade definitions for Cratenemertea, Eumonostilifera, Oerstediina, Plectonemertidae, Oerstediidae, and Amphiporina. Oerstediina and Amphiporina are placed on the Linnaean rank of infraorder. Constituent genera and species for each higher taxon are tabulated. The genus Amphiporella Friedrich, 1939 is herein replaced with Germanemertes nom. nov. to avoid homonymy with the Carboniferous fossil bryozoan genus Amphiporella Girty, 1910. Loxorrhochmidae Diesing, 1862 is declared a nomen oblitum relative to Tetrastemmatidae Hubrecht, 1897, a nomen protectum under Article 23.9 of the International Code of Zoological Nomenclature. There remain 308 species of eumonostiliferans whose infraorder affiliation is uncertain due to the lack of information on vascular morphology and molecular sequence data. The suborder affiliation of the two species Cinclidonemertes mooreae Crandall, 2010 and Verrillianemertes schultzei Senz, 2001 is left uncertain.  


Zootaxa ◽  
2017 ◽  
Vol 4312 (1) ◽  
pp. 194 ◽  
Author(s):  
ANNIKA PIETERSE ◽  
ANTOINETTE P. MALAN ◽  
LAURA M. KRUITBOS ◽  
WILLEM SIRGEL ◽  
JENNA L. ROSS

A survey of nematodes that use terrestrial slugs as definitive hosts, was conducted in canola fields and ornamental nurseries located in the Western Cape province of South Africa. A total of 3290 slugs were collected from 22 different sites. On the identification of the slugs, they were vivisected and examined for internal nematodes. After identifying the nematodes found, on the basis of their morphological characteristics, their identity was confirmed using molecular sequence data for the internal transcribed spacer (ITS-1, 5.8S, ITS-2), D2-D3 expansion segments of the large subunit (LSU or 28S) and small subunit (SSU or 18S) ribosomal DNA. Of the 22 sites investigated, 13 had nematodes present, with 8 % of the slugs being found to be infected with nematodes. Seven nematode species were confirmed, including Agfa flexilis, Angiostoma margaretae, Angiostoma sp. (SA1), Caenorhabditis elegans, mermithid sp. (SA1), Phasmarhabditis sp. (SA3) and Phasmarhabditis sp. (SA4). In addition, several Angiostoma spp. were also isolated, but could only be identified to genus level due to limited material. Of the seven confirmed species, four were previously undescribed. This is the first record of A. margaretae associating with Deroceras panormitanum, Deroceras reticulatum, Lehmannia valentiana and Oopelta polypunctata. Also, this is the first time that a mermithid has been found associating with molluscs in South Africa. 


2009 ◽  
Vol 54 (3) ◽  
pp. 969-976 ◽  
Author(s):  
Karen Bush ◽  
George A. Jacoby

ABSTRACT Two classification schemes for β-lactamases are currently in use. The molecular classification is based on the amino acid sequence and divides β-lactamases into class A, C, and D enzymes which utilize serine for β-lactam hydrolysis and class B metalloenzymes which require divalent zinc ions for substrate hydrolysis. The functional classification scheme updated herein is based on the 1995 proposal by Bush et al. (K. Bush, G. A. Jacoby, and A. A. Medeiros, Antimicrob. Agents Chemother. 39:1211-1233, 1995). It takes into account substrate and inhibitor profiles in an attempt to group the enzymes in ways that can be correlated with their phenotype in clinical isolates. Major groupings generally correlate with the more broadly based molecular classification. The updated system includes group 1 (class C) cephalosporinases; group 2 (classes A and D) broad-spectrum, inhibitor-resistant, and extended-spectrum β-lactamases and serine carbapenemases; and group 3 metallo-β-lactamases. Several new subgroups of each of the major groups are described, based on specific attributes of individual enzymes. A list of attributes is also suggested for the description of a new β-lactamase, including the requisite microbiological properties, substrate and inhibitor profiles, and molecular sequence data that provide an adequate characterization for a new β-lactam-hydrolyzing enzyme.


2017 ◽  
Vol 49 (4) ◽  
pp. 321-332 ◽  
Author(s):  
Matthias SCHULTZ

AbstractMorphological characteristics and analyses of molecular sequence data (ITS, mtSSU) indicate that the austral-marine lichenLichina pygmaeavar.intermediais distinct from the chiefly European marine speciesL. confinisandL. pygmaea. It is thus proposed to treat var.intermediaas a separate species.Lichina intermediadiffers fromL. confinischiefly in the distinctly corticated branches, and deviates fromL. pygmaeain the shorter and thinner branches. Diagnostic differences between the three species are summarized and distribution patterns discussed.


2019 ◽  
Vol 2 ◽  
Author(s):  
Wendy Moore ◽  
David Maddison

Members of the carabid subfamily Paussinae are known for their explosive defensive chemistry and their associations with ants, which vary from some species being facultative predators of adult ants to others being obligate predators of ant brood. This association with ants has driven extreme morphological adaptations in some lineages. Approximately 750 species are currently classified into four tribes: Metriini, Ozaenini, Protopaussini and Paussini. Here we use molecular sequence data from five genes (28S ribosomal DNA; 18S ribosomal DNA; wingless; carbamoyl phosphate synthetase domain of the rudimentary gene; and arginine kinase) to reveal patterns of deep divergence and provide a new tribal level classification reflecting evolutionary history. We recognize and describe two new tribes, and the tribe Ozaenini is redefined. Among other traits, members of each tribe has a characteristic shape of the cuticular fold at the posterolateral angle of both elytra, known as the flange of Coanda.


2021 ◽  
Vol 83 (2) ◽  
pp. 71-77
Author(s):  
Azadeh Habibi ◽  
Banafsheh Safaiefarahani

The aim of this study was to characterize the mycobiota in soil and sediment samples of Jefriz cave in Kerman, Iran. During 2018−2019, the culturable mycobiota from several sites within the Jefriz cave, resulted in 82 fungal isolates. Morphological characteristics of the isolates, as well as molecular sequence data, were used for species identifications. The fungi were identified as species of Fusarium, Fusicolla, Geomyces (Pseudogymnoascus), Humicola, Chalastospora, Penicillium, Aspergillus, Epiciccum, Podospora and Mucor. The most prevalent was Aspergillus spelunceus, followed by Geomyces pannorum and Humicola grisea. The majority of these species have been reported as cave residents in previous studies of cave environments. Our data showed that the fungal community composition varied between the samples from the entrance and less visited sites deeper in the cave. This study is the first cave mycological investigation in Iran, and one of the identified species is reported for the first time from a cave.


Phytotaxa ◽  
2014 ◽  
Vol 176 (1) ◽  
pp. 219 ◽  
Author(s):  
ASHA J. DISSANAYAKE ◽  
RUVISHIKA S. JAYAWARDENA ◽  
SARANYAPHAT BOONMEE ◽  
KASUN M. THAMBUGALA ◽  
QING TIAN ◽  
...  

The family Myriangiaceae is relatively poorly known amongst the Dothideomycetes and includes genera which are saprobic, epiphytic and parasitic on the bark, leaves and branches of various plants. The family has not undergone any recent revision, however, molecular data has shown it to be a well-resolved family closely linked to Elsinoaceae in Myriangiales. Both morphological and molecular characters indicate that Elsinoaceae differs from Myriangiaceae. In Elsinoaceae, small numbers of asci form in locules in light coloured pseudostromata, which form typical scab-like blemishes on leaf or fruit surfaces. The coelomycetous, “Sphaceloma”-like asexual state of Elsinoaceae, form more frequently than the sexual state; conidiogenesis is phialidic and conidia are 1-celled and hyaline. In Myriangiaceae, locules with single asci are scattered in a superficial, coriaceous to sub-carbonaceous, black ascostromata and do not form scab-like blemishes. No asexual state is known. In this study, we revisit the family Myriangiaceae, and accept ten genera, providing descriptions and discussion on the generic types of Anhellia, Ascostratum, Butleria, Dictyocyclus, Diplotheca, Eurytheca, Hemimyriangium, Micularia, Myriangium and Zukaliopsis. The genera of Myriangiaceae are compared and contrasted. Myriangium duriaei is the type species of the family, while Diplotheca is similar and may possibly be congeneric. The placement of Anhellia in Myriangiaceae is supported by morphological and molecular data. Because of similarities with Myriangium, Ascostratum (A. insigne), Butleria (B. inaghatahani), Dictyocyclus (D. hydrangea), Eurytheca (E. trinitensis), Hemimyriangium (H. betulae), Micularia (M. merremiae) and Zukaliopsis (Z. amazonica) are placed in Myriangiaceae. Molecular sequence data from fresh collections is required to confirm the relationships and placement of the genera in this family.


Zootaxa ◽  
2017 ◽  
Vol 4238 (1) ◽  
pp. 58 ◽  
Author(s):  
ATSUSHI MOCHIZUKI ◽  
CHARLES S. HENRY ◽  
PETER DUELLI

The small lacewing genus Apertochrysa comprises species from Africa, Asia and Australia. All lack a tignum, but otherwise resemble distantly related genera. We show that Apertochrysa does not form a monophyletic clade, based on analyses of molecular sequence data and morphological traits such as the presence and shape of the male gonapsis, wing venation, and larval setae. Apertochrysa kichijoi forms a clade with Eremochrysa, Suarius and Chrysemosa, whereas A. albolineatoides belongs to a clade that includes Cunctochrysa. Apertochrysa albolineatoides should become a new combination as Cunctochrysa albolineatoides, while A. kichijoi will have to be transferred to a new genus. The Australian A. edwardsi, the African A. eurydera and the type species of the genus Apertochrysa, A. umbrosa, join the large Pseudomallada group. Relationships of A. umbrosa are less certain, because for it we could amplify only one of the three nuclear genes used in the overall analysis. However, in all morphological traits tested, that species strongly resembles A. edwardsi and A. eurydera and thus is very likely just another exceptional Pseudomallada lacking a tignum. The fate of the genus name Apertochrysa depends on additional molecular and morphological analyses of A. umbrosa. 


Sign in / Sign up

Export Citation Format

Share Document