scholarly journals Classification of molecular sequence data using Bayesian phylogenetic mixture models

2014 ◽  
Vol 75 ◽  
pp. 81-95 ◽  
Author(s):  
E. Loza-Reyes ◽  
M.A. Hurn ◽  
A. Robinson
Zootaxa ◽  
2021 ◽  
Vol 4920 (2) ◽  
pp. 151-199
Author(s):  
HIROSHI KAJIHARA

The nemertean order Monostilifera consists of 594 species in 127 genera and is distributed worldwide. Within the Monostilifera, two suborders have been recognized, Cratenemertea and Eumonostilifera. Within the latter, two, unranked clade names, Oerstediina and Amphiporina, were recently proposed without formal taxonomic definition. In this article, I give morphological circumscriptions and clade definitions for Cratenemertea, Eumonostilifera, Oerstediina, Plectonemertidae, Oerstediidae, and Amphiporina. Oerstediina and Amphiporina are placed on the Linnaean rank of infraorder. Constituent genera and species for each higher taxon are tabulated. The genus Amphiporella Friedrich, 1939 is herein replaced with Germanemertes nom. nov. to avoid homonymy with the Carboniferous fossil bryozoan genus Amphiporella Girty, 1910. Loxorrhochmidae Diesing, 1862 is declared a nomen oblitum relative to Tetrastemmatidae Hubrecht, 1897, a nomen protectum under Article 23.9 of the International Code of Zoological Nomenclature. There remain 308 species of eumonostiliferans whose infraorder affiliation is uncertain due to the lack of information on vascular morphology and molecular sequence data. The suborder affiliation of the two species Cinclidonemertes mooreae Crandall, 2010 and Verrillianemertes schultzei Senz, 2001 is left uncertain.  


2009 ◽  
Vol 54 (3) ◽  
pp. 969-976 ◽  
Author(s):  
Karen Bush ◽  
George A. Jacoby

ABSTRACT Two classification schemes for β-lactamases are currently in use. The molecular classification is based on the amino acid sequence and divides β-lactamases into class A, C, and D enzymes which utilize serine for β-lactam hydrolysis and class B metalloenzymes which require divalent zinc ions for substrate hydrolysis. The functional classification scheme updated herein is based on the 1995 proposal by Bush et al. (K. Bush, G. A. Jacoby, and A. A. Medeiros, Antimicrob. Agents Chemother. 39:1211-1233, 1995). It takes into account substrate and inhibitor profiles in an attempt to group the enzymes in ways that can be correlated with their phenotype in clinical isolates. Major groupings generally correlate with the more broadly based molecular classification. The updated system includes group 1 (class C) cephalosporinases; group 2 (classes A and D) broad-spectrum, inhibitor-resistant, and extended-spectrum β-lactamases and serine carbapenemases; and group 3 metallo-β-lactamases. Several new subgroups of each of the major groups are described, based on specific attributes of individual enzymes. A list of attributes is also suggested for the description of a new β-lactamase, including the requisite microbiological properties, substrate and inhibitor profiles, and molecular sequence data that provide an adequate characterization for a new β-lactam-hydrolyzing enzyme.


2019 ◽  
Vol 2 ◽  
Author(s):  
Wendy Moore ◽  
David Maddison

Members of the carabid subfamily Paussinae are known for their explosive defensive chemistry and their associations with ants, which vary from some species being facultative predators of adult ants to others being obligate predators of ant brood. This association with ants has driven extreme morphological adaptations in some lineages. Approximately 750 species are currently classified into four tribes: Metriini, Ozaenini, Protopaussini and Paussini. Here we use molecular sequence data from five genes (28S ribosomal DNA; 18S ribosomal DNA; wingless; carbamoyl phosphate synthetase domain of the rudimentary gene; and arginine kinase) to reveal patterns of deep divergence and provide a new tribal level classification reflecting evolutionary history. We recognize and describe two new tribes, and the tribe Ozaenini is redefined. Among other traits, members of each tribe has a characteristic shape of the cuticular fold at the posterolateral angle of both elytra, known as the flange of Coanda.


Phytotaxa ◽  
2014 ◽  
Vol 176 (1) ◽  
pp. 219 ◽  
Author(s):  
ASHA J. DISSANAYAKE ◽  
RUVISHIKA S. JAYAWARDENA ◽  
SARANYAPHAT BOONMEE ◽  
KASUN M. THAMBUGALA ◽  
QING TIAN ◽  
...  

The family Myriangiaceae is relatively poorly known amongst the Dothideomycetes and includes genera which are saprobic, epiphytic and parasitic on the bark, leaves and branches of various plants. The family has not undergone any recent revision, however, molecular data has shown it to be a well-resolved family closely linked to Elsinoaceae in Myriangiales. Both morphological and molecular characters indicate that Elsinoaceae differs from Myriangiaceae. In Elsinoaceae, small numbers of asci form in locules in light coloured pseudostromata, which form typical scab-like blemishes on leaf or fruit surfaces. The coelomycetous, “Sphaceloma”-like asexual state of Elsinoaceae, form more frequently than the sexual state; conidiogenesis is phialidic and conidia are 1-celled and hyaline. In Myriangiaceae, locules with single asci are scattered in a superficial, coriaceous to sub-carbonaceous, black ascostromata and do not form scab-like blemishes. No asexual state is known. In this study, we revisit the family Myriangiaceae, and accept ten genera, providing descriptions and discussion on the generic types of Anhellia, Ascostratum, Butleria, Dictyocyclus, Diplotheca, Eurytheca, Hemimyriangium, Micularia, Myriangium and Zukaliopsis. The genera of Myriangiaceae are compared and contrasted. Myriangium duriaei is the type species of the family, while Diplotheca is similar and may possibly be congeneric. The placement of Anhellia in Myriangiaceae is supported by morphological and molecular data. Because of similarities with Myriangium, Ascostratum (A. insigne), Butleria (B. inaghatahani), Dictyocyclus (D. hydrangea), Eurytheca (E. trinitensis), Hemimyriangium (H. betulae), Micularia (M. merremiae) and Zukaliopsis (Z. amazonica) are placed in Myriangiaceae. Molecular sequence data from fresh collections is required to confirm the relationships and placement of the genera in this family.


Zootaxa ◽  
2017 ◽  
Vol 4238 (1) ◽  
pp. 58 ◽  
Author(s):  
ATSUSHI MOCHIZUKI ◽  
CHARLES S. HENRY ◽  
PETER DUELLI

The small lacewing genus Apertochrysa comprises species from Africa, Asia and Australia. All lack a tignum, but otherwise resemble distantly related genera. We show that Apertochrysa does not form a monophyletic clade, based on analyses of molecular sequence data and morphological traits such as the presence and shape of the male gonapsis, wing venation, and larval setae. Apertochrysa kichijoi forms a clade with Eremochrysa, Suarius and Chrysemosa, whereas A. albolineatoides belongs to a clade that includes Cunctochrysa. Apertochrysa albolineatoides should become a new combination as Cunctochrysa albolineatoides, while A. kichijoi will have to be transferred to a new genus. The Australian A. edwardsi, the African A. eurydera and the type species of the genus Apertochrysa, A. umbrosa, join the large Pseudomallada group. Relationships of A. umbrosa are less certain, because for it we could amplify only one of the three nuclear genes used in the overall analysis. However, in all morphological traits tested, that species strongly resembles A. edwardsi and A. eurydera and thus is very likely just another exceptional Pseudomallada lacking a tignum. The fate of the genus name Apertochrysa depends on additional molecular and morphological analyses of A. umbrosa. 


2009 ◽  
Vol 364 (1527) ◽  
pp. 2197-2207 ◽  
Author(s):  
Peter G. Foster ◽  
Cymon J. Cox ◽  
T. Martin Embley

The three-domains tree, which depicts eukaryotes and archaebacteria as monophyletic sister groups, is the dominant model for early eukaryotic evolution. By contrast, the ‘eocyte hypothesis’, where eukaryotes are proposed to have originated from within the archaebacteria as sister to the Crenarchaeota (also called the eocytes), has been largely neglected in the literature. We have investigated support for these two competing hypotheses from molecular sequence data using methods that attempt to accommodate the across-site compositional heterogeneity and across-tree compositional and rate matrix heterogeneity that are manifest features of these data. When ribosomal RNA genes were analysed using standard methods that do not adequately model these kinds of heterogeneity, the three-domains tree was supported. However, this support was eroded or lost when composition-heterogeneous models were used, with concomitant increase in support for the eocyte tree for eukaryotic origins. Analysis of combined amino acid sequences from 41 protein-coding genes supported the eocyte tree, whether or not composition-heterogeneous models were used. The possible effects of substitutional saturation of our data were examined using simulation; these results suggested that saturation is delayed by among-site rate variation in the sequences, and that phylogenetic signal for ancient relationships is plausibly present in these data.


Phytotaxa ◽  
2021 ◽  
Vol 514 (3) ◽  
pp. 247-260
Author(s):  
KASUN THAMBUGALA ◽  
DINUSHANI DARANAGAMA ◽  
SAGARIKA KANNANGARA ◽  
THENUKA KODITUWAKKU

Endophytic fungi are a diverse group of microorganisms that live asymptomatically in healthy tissues of host and they have been reported from all kinds of plant tissues such as leaves, stems, roots, flowers, and fruits. In this study, fungal endophytes associated with tea leaves (Camellia sinensis) were collected from Kandy, Kegalle, and Nuwara Eliya districts in Sri Lanka and were isolated, characterized, and identified. A total of twenty endophytic fungal isolates belonging to five genera were recovered and ITS-rDNA sequence data were used to identify them. All isolated endophytic fungal strains belong to the phylum Ascomycota and the majority of these isolates were identified as Colletotrichum species. Phyllosticta capitalensis was the most commonly found fungal endophyte in tea leaves and was recorded in all three districts where the samples were collected. This is the very first investigation on fungal endophytes associated with C. sinensis in Sri Lanka based on molecular sequence data. In addition, a comprehensive account of known endophytic fungi reported worldwide on Camellia sinensis is provided.


Mammalia ◽  
2019 ◽  
Vol 83 (2) ◽  
pp. 180-189 ◽  
Author(s):  
Adam W. Ferguson ◽  
Houssein R. Roble ◽  
Molly M. McDonough

AbstractThe molecular phylogeny of extant genets (Carnivora, Viverridae,Genetta) was generated using all species with the exception of the Ethiopian genetGenetta abyssinica. Herein, we provide the first molecular phylogenetic assessment ofG. abyssinicausing molecular sequence data from multiple mitochondrial genes generated from a recent record of this species from the Forêt du Day (the Day Forest) in Djibouti. This record represents the first verified museum specimen ofG. abyssinicacollected in over 60 years and the first specimen with a specific locality for the country of Djibouti. Multiple phylogenetic analyses revealed conflicting results as to the exact relationship ofG. abyssinicato otherGenettaspecies, providing statistical support for a sister relationship to all other extant genets for only a subset of mitochondrial analyses. Despite the inclusion of this species for the first time, phylogenetic relationships amongGenettaspecies remain unclear, with limited nodal support for many species. In addition to providing an alternative hypothesis of the phylogenetic relationships among extant genets, this recent record provides the first complete skeleton of this species to our knowledge and helps to shed light on the distribution and habitat use of this understudied African small carnivore.


Sign in / Sign up

Export Citation Format

Share Document