Role of the TATA Binding Protein-Transcription Factor IIB Interaction in Supporting Basal and Activated Transcription in Plant Cells

2000 ◽  
Vol 12 (1) ◽  
pp. 125
Author(s):  
Songqin Pan ◽  
Eva Czarnecka-Verner ◽  
William B. Gurley
1995 ◽  
Vol 270 (13) ◽  
pp. 7219-7226 ◽  
Author(s):  
M. Lienhard Schmitz ◽  
Gertraud Stelzer ◽  
Herbert Altmann ◽  
Michael Meisterernst ◽  
Patrick A. Baeuerle

1997 ◽  
Vol 324 (1) ◽  
pp. 249-253 ◽  
Author(s):  
Jean M. RAWLING ◽  
Rafael ALVAREZ-GONZALEZ

We have examined the susceptibility of some of the basal eukaryotic transcription factors as covalent targets for poly(ADP-ribosyl)ation. Human recombinant TATA-binding protein, transcription factor (TF)IIB and TFIIF (made up of the 30 and 74 kDa RNA polymerase II-associated proteins RAP30 and RAP74) were incubated with calf thymus poly(ADP-ribose) polymerase and [32P]NAD+ at 37 °C. On lithium dodecyl sulphate/PAGE and autoradiography, two bands of radioactivity, coincident with RAP30 and RAP74, were observed. No radioactivity co-migrated with TATA-binding protein or TFIIB. The phenomenon was dependent on the presence of nicked DNA, which is essential for poly(ADP-ribose) polymerase activity. Covalent modification of TFIIF increased with time of incubation, with increasing TFIIF concentration and with increasing NAD+ concentration. High-resolution PAGE confirmed that the radioactive species associated with RAP30 and RAP74 were ADP-ribose polymers. From these observations, we conclude that both TFIIF subunits are highly specific substrates for covalent poly(ADP-ribosyl)ation.


2003 ◽  
Vol 23 (6) ◽  
pp. 1910-1921 ◽  
Author(s):  
Yaxin Yu ◽  
Peter Eriksson ◽  
Leena T. Bhoite ◽  
David J. Stillman

ABSTRACT Transcriptional activation of the yeast HO gene involves the sequential action of DNA-binding and chromatin-modifying factors. Here we examine the role of the SAGA complex and the Nhp6 architectural transcription factor in HO regulation. Our data suggest that these factors regulate binding of the TATA-binding protein (TBP) to the promoter. A gcn5 mutation, eliminating the histone acetyltransferase present in SAGA, reduces the transcription of HO, but expression is restored in a gcn5 spt3 double mutant. We conclude that the major role of Gcn5 in HO activation is to overcome repression by Spt3. Spt3 is also part of SAGA, and thus two proteins in the same regulatory complex can have opposing roles in transcriptional regulation. Chromatin immunoprecipitation experiments show that TBP binding to HO is very weak in wild-type cells but markedly increased in an spt3 mutant, indicating that Spt3 reduces HO expression by inhibiting TBP binding. In contrast, it has been shown previously that Spt3 stimulates TBP binding to the GAL1 promoter as well as GAL1 expression, and thus, Spt3 regulates these promoters differently. We also find genetic interactions between TBP and either Gcn5 or the high-mobility-group protein Nhp6, including multicopy suppression and synthetic lethality. These results suggest that, while Spt3 acts to inhibit TBP interaction with the HO promoter, Gcn5 and Nhp6 act to promote TBP binding. The result of these interactions is to limit TBP binding and HO expression to a short period within the cell cycle. Furthermore, the synthetic lethality resulting from combining a gcn5 mutation with specific TBP point mutations can be suppressed by the overexpression of transcription factor IIA (TFIIA), suggesting that histone acetylation by Gcn5 can stimulate transcription by promoting the formation of a TBP/TFIIA complex.


1997 ◽  
Vol 17 (12) ◽  
pp. 6784-6793 ◽  
Author(s):  
C S Bangur ◽  
T S Pardee ◽  
A S Ponticelli

The general transcription factor IIB (TFIIB) plays an essential role in transcription of protein-coding genes by RNA polymerase II. We have used site-directed mutagenesis to assess the role of conserved amino acids in several important regions of yeast TFIIB. These include residues in the highly conserved amino-terminal region and basic residues in the D1 and E1 core domain alpha-helices. Acidic substitutions of residues K190 (D1) and K201 (E1) resulted in growth impairments in vivo, reduced basal transcriptional activity in vitro, and an inability to form stable TFIIB-TATA-binding protein-DNA (DB) complexes. Significantly, these mutants retained the ability to respond to acidic activators in vivo and to the Gal4-VP16 activator in vitro, supporting the view that these basic residues play a role in basal transcription. In addition, 14 single-amino-acid substitutions were introduced in the conserved amino-terminal region. Three of these mutants, the L50D, R64E, and R78L mutants, displayed altered growth properties in vivo and were compromised for supporting transcription in vitro. The L50D mutant was impaired for RNA polymerase II interaction, while the R64E mutant exhibited altered transcription start site selection both in vitro and in vivo and, surprisingly, was more active than the wild type in the formation of stable DB complexes. These results support the view that the amino-terminal domain is involved in the direct interaction between yeast TFIIB and RNA polymerase II and suggest that this domain may interact with DNA and/or modulate the formation of a DB complex.


1993 ◽  
Vol 13 (11) ◽  
pp. 6733-6741
Author(s):  
X Xu ◽  
C Prorock ◽  
H Ishikawa ◽  
E Maldonado ◽  
Y Ito ◽  
...  

Rel family proteins regulate the expression of genes linked to kappa B-binding motifs. Little is known, however, of the mechanism by which they enhance transcription. We have investigated the ability of the v-Rel and c-Rel oncoproteins to interact with components of the basal transcription machinery. Here we report that both the acidic transcription activation domain mapping to the unique C terminus of chicken c-Rel and the F9 cell-specific activation region common to both v-Rel and c-Rel interact with the TATA-binding protein (TBP) and transcription factor IIB (TFIIB) in vitro and in vivo. We also demonstrate that TPB interaction with Rel activation regions leads to synergistic activation of transcription of a kappa B-linked reporter gene. Combined with the observation that the mouse c-Rel and human RelA proteins also interact with TBP and TFIIB in vitro, these results suggest that association with basal transcription factors is important for the transcriptional activities of Rel family proteins.


Cell ◽  
1992 ◽  
Vol 71 (6) ◽  
pp. 1055-1064 ◽  
Author(s):  
George A. Kassavetis ◽  
Claudio A.P. Joazeiro ◽  
Marina Pisano ◽  
E.Peter Geiduschek ◽  
Trenton Colbert ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document