scholarly journals Immunological Assays for the Classroom II: Hybridoma Technology: Production of Monoclonal Antibodies

1988 ◽  
Vol 50 (1) ◽  
pp. 48-51 ◽  
Author(s):  
A. J. Russo
2018 ◽  
Vol 64 (4) ◽  
pp. 504-507
Author(s):  
Vladimir Klimovich ◽  
Natalya Vartanyan ◽  
Anastasiya Stolbovaya ◽  
Lidiya Terekhina ◽  
Olga Shashkova ◽  
...  

During last years monoclonal antibodies (MAB) directed against vascular endothelium markers demonstrated their efficiency for visualization and targeted delivery of therapeutic drugs to tumors. Endoglin (CD105) which serves as a key element that determines endothelial cells quiescence or activation is one of such markers. Endoglin is highly expressed on the vascular endothelium of growing tumors. A first panel of MAB against endoglin in our country was produced at the hybridoma technology laboratory of RRC RST named after A.M. Granov. On the basis of these MAB ELISA was created allowing detection of endoglin in human plasma and other biological fluids. Several MAB had been shown to bind endoglin on the membrane of the cultured endothelial cells and to persist there for several hours. During the first 30 min after binding some of the immune complexes “endoglin-MAB” were internalized into the cytoplasm and were found included in the endosomes. In future these MAB can be used to create the reagents for the addressed delivery of isotope tags both on the membrane and into the cytoplasm of endothelial cells.


Author(s):  
Ahmed Muhsin ◽  
Roberto Rangel ◽  
Long Vien ◽  
Laura Bover

2020 ◽  
Vol 16 (S4) ◽  
Author(s):  
Julia Stockmann ◽  
Léon Beyer ◽  
Sandy Galkowski ◽  
Nathalie Woitzik ◽  
Jörn Güldenhaupt ◽  
...  

Antibodies ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 21 ◽  
Author(s):  
Erik Doevendans ◽  
Huub Schellekens

The development of hybridoma technology for producing monoclonal antibodies (mAbs) by Kohler and Milstein (1975) counts as one of the major medical breakthroughs, opening up endless possibilities for research, diagnosis and for treatment of a whole variety of diseases. Therapeutic mAbs were introduced three decades ago. The first generation of therapeutic mAbs of murine origin showed high immunogenicity, which limited efficacy and was associated with severe infusion reactions. Subsequently chimeric, humanized, and fully human antibodies were introduced as therapeutics, these mAbs were considerably less immunogenic. Unexpectedly humanized mAbs generally show similar immunogenicity as chimeric antibodies; based on sequence homology chimeric mAbs are sometimes more “human” than humanized mAbs. With the introduction of the regulatory concept of similar biological medicines (biosimilars) a key concern is the similarity in terms of immunogenicity of these biosimilars with their originators. This review focuses briefly on the mechanisms of induction of immunogenicity by biopharmaceuticals, mAbs in particular, in relation to the target of the immune system.


2010 ◽  
Vol 17 (12) ◽  
pp. 2033-2036 ◽  
Author(s):  
Dipankar Das ◽  
Sriram Kammila ◽  
Mavanur R. Suresh

ABSTRACT Five monoclonal antibodies (MAbs) against recombinant nucleocapsid protein (NP) of severe acute respiratory syndrome (SARS)-causing coronavirus (CoV) were developed by hybridoma technology. Epitope mapping by Western blotting showed that these anti-SARS-CoV NP MAbs bind to distinct domains of NP. These anti-SARS-CoV NP MAbs, with their high specificity, are potentially ideal candidates for developing early and sensitive diagnostic assays for SARS-CoV.


1988 ◽  
Vol 1 (3) ◽  
pp. 313-329 ◽  
Author(s):  
W J Payne ◽  
D L Marshall ◽  
R K Shockley ◽  
W J Martin

Monoclonal antibody (MAb) technology is well recognized as a significant development for producing specific serologic reagents to a wide variety of antigens in unlimited amounts. These reagents have provided the means for developing a number of highly specific and reproducible immunological assays for rapid and accurate diagnosis of an extensive list of diseases, including infectious diseases. The impact that MAbs have had in characterizing infectious disease pathogens, as well as their current and future applications for use in clinical microbiology laboratories, is reviewed. In addition, the advantages (and disadvantages) of the use of MAbs in a number of immunoassays, such as particle agglutination, radioimmunoassays, enzyme-linked immunosorbent assays, immunofluorescent-antibody assays, and immunohistology, are explored, including the use of these reagents in novel test system assays. Also, nucleic acid probe technology is compared with the use of MAbs from the perspective of their respective applications in the diagnosis of infectious disease agents. There is no question that hybridoma technology has the potential to alter significantly the methods currently used in most clinical microbiology laboratories.


Author(s):  
Sanchita Mitra ◽  
Pushpa Chaudhary Tomar

Abstract Background Hybridoma technology is one of the most common methods used to produce monoclonal antibodies. In this process, antibody-producing B lymphocytes are isolated from mice after immunizing the mice with specific antigen and are fused with immortal myeloma cell lines to form hybrid cells, called hybridoma cell lines. These hybridoma cells are cultured in a lab to produce monoclonal antibodies, against a specific antigen. This can be achieved by an in vivo or an in vitro method. It is preferred above all the available methods to produce monoclonal antibodies because antibodies thus produced are of high purity and are highly sensitive and specific. Main body of the abstract Monoclonal antibodies are useful in diagnostic, imaging, and therapeutic purposes and have a very high clinical significance. Once hybridoma cells become stable, these cell lines offer limitless production of homogenized antibodies. This method is also cost-effective. The antibodies produced by this method are highly sensitive and specific to the targeted antigen. It is an important tool used in various fields of research such as in toxicology, animal biotechnology, medicine, pharmacology, cell, and molecular biology. Monoclonal antibodies are used extensively in the diagnosis and therapeutic applications. Radiolabeled monoclonal antibodies are used as probes to detect tumor antigens in the living system; also radioisotope coupled antibodies are used for therapeutic target specific action on oncogenic cells. Short conclusion Presently, the monoclonal antibodies used are either raised in mice or rats; this poses a risk of disease transfer from mice to humans. There is no guarantee that antibodies thus created are entirely virus-free, despite the purification process. Also, there are some immunogenic responses observed against the antibodies of mice origin. Technologically advanced techniques such as genetic engineering helped in reducing some of these limitations. Advanced methods are under development to make lab-produced monoclonal antibodies as human as possible. This review discusses the advantages and challenges associated with monoclonal antibody production, also enlightens the advancement, clinical significance, and future aspects of this technique.


Sign in / Sign up

Export Citation Format

Share Document