Material Source-Types

2022 ◽  
pp. 25-32
Keyword(s):  
2021 ◽  
Vol 164 ◽  
pp. 106029
Author(s):  
Diego Maciel Gerônimo ◽  
Sheila Catarina de Oliveira ◽  
Frederico Luis Felipe Soares ◽  
Patricio Peralta-Zamora ◽  
Noemi Nagata

Cellulose ◽  
2021 ◽  
Author(s):  
Ana Luiza P. Queiroz ◽  
Brian M. Kerins ◽  
Jayprakash Yadav ◽  
Fatma Farag ◽  
Waleed Faisal ◽  
...  

AbstractMicrocrystalline cellulose (MCC) is a semi-crystalline material with inherent variable crystallinity due to raw material source and variable manufacturing conditions. MCC crystallinity variability can result in downstream process variability. The aim of this study was to develop models to determine MCC crystallinity index (%CI) from Raman spectra of 30 commercial batches using Raman probes with spot sizes of 100 µm (MR probe) and 6 mm (PhAT probe). A principal component analysis model separated Raman spectra of the same samples captured using the different probes. The %CI was determined using a previously reported univariate model based on the ratio of the peaks at 380 and 1096 cm−1. The univariate model was adjusted for each probe. The %CI was also predicted from spectral data from each probe using partial least squares regression models (where Raman spectra and univariate %CI were the dependent and independent variables, respectively). Both models showed adequate predictive power. For these models a general reference amorphous spectrum was proposed for each instrument. The development of the PLS model substantially reduced the analysis time as it eliminates the need for spectral deconvolution. A web application containing all the models was developed. Graphic abstract


2021 ◽  
pp. 105733
Author(s):  
B.K. Kenzhaliyev ◽  
T. Yu Surkovа ◽  
M.N. Azlan ◽  
S.B. Yulusov ◽  
B.M. Sukurov ◽  
...  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yixin Dou ◽  
Guangzhou Mao ◽  
Lingqiang Meng ◽  
Xiaotong Liu ◽  
Pengrui An ◽  
...  

2021 ◽  
Vol 74 ◽  
pp. 102384
Author(s):  
Sara Kasmaeeyazdi ◽  
Mehdi Abdolmaleki ◽  
Elsy Ibrahim ◽  
Jingyi Jiang ◽  
Ignacio Marzan ◽  
...  

2021 ◽  
pp. 1-41
Author(s):  
Lianfu Hai ◽  
Qinghai Xu ◽  
Caixia Mu ◽  
Rui Tao ◽  
Lei Wang ◽  
...  

In the Tanshan area, which is at the Liupanshui Basin, abundant oil shale resources are associated with coals. We analyzed the cores, geochemistry of rare earth elements (REE) and trace element of oil shale with ICP-MS technology to define the palaeo-sedimentary environment, material source and geological significance of oil shale in this area. The results of the summed compositions of REE, and the total REE contents (SREE), in the Yan'an Formation oil shale are slightly higher than the global average of the composition of the upper continental crustal (UCC) and are lower than that of North American shales. The REE distribution pattern is characterized by right-inclined enrichment of light rare earth elements (LREE) and relative loss of heavy rare earth elements (HREE), which reflects the characteristics of crustal source deposition. There is a moderate degree of differentiation among LREE, while the differences among HREE are not obvious. The dEu values show a weak negative anomaly and the dCe values show no anomaly, which are generally consistent with the distribution of REE in the upper crust. The characteristics of REE and trace elements indicate that the oil shale formed in an oxygen-poor reducing environment and that the paleoclimatic conditions were relatively warm and humid. The degree of differentiation of REE indicates that the sedimentation rate in the study area was low, which reflected the characteristics of relatively deep sedimentary water bodies and distant source areas. The results also proved that the source rock mainly consisted of calcareous mudstone, and a small amount of granite was also mixed in.


Nanomaterials ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 844 ◽  
Author(s):  
Quanrun Liu ◽  
Jingjie Zhang ◽  
He He ◽  
Guangxu Huang ◽  
Baolin Xing ◽  
...  

Coal tar pitch (CTP), a by-product of coking industry, has a unique molecule structure comprising an aromatic nucleus and several side chains bonding on this graphene-like nucleus, which is very similar to the structure of graphene quantum dots (GQDs). Based on this perception, we develop a facile approach to convert CTP to GQDs only by oxidation with hydrogen peroxide under mild conditions. One to three graphene layers, monodisperse GQDs with a narrow size distribution of 1.7 ± 0.4 nm, are obtained at high yield (more than 80 wt. %) from CTP. The as-produced GQDs are highly soluble and strongly fluorescent in aqueous solution. This simple strategy provides a feasible route towards the commercial synthesis of GQDs for its cheap material source, green reagent, mild condition, and high yield.


Sign in / Sign up

Export Citation Format

Share Document