Understanding the Impact of Costa Rica’s Protectionist Rice Economy on Smallholder Farmers in Semi-arid Northwest Costa Rica

2020 ◽  
pp. 103-116
Author(s):  
BENJAMIN P. WARNER ◽  
CHRISTOPHER P. KUZDAS
Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 639 ◽  
Author(s):  
Bright Freduah ◽  
Dilys MacCarthy ◽  
Myriam Adam ◽  
Mouhamed Ly ◽  
Alex Ruane ◽  
...  

Climate change is estimated to exacerbate existing challenges faced by smallholder farmers in Sub-Sahara Africa. However, limited studies quantify the extent of variation in climate change impact under these systems at the local scale. The Decision Support System for Agro-technological Transfer (DSSAT) was used to quantify variation in climate change impacts on maize yield under current agricultural practices in semi-arid regions of Senegal (Nioro du Rip) and Ghana (Navrongo and Tamale). Multi-benchmark climate models (Mid-Century, 2040–2069 for two Representative Concentration Pathways, RCP4.5 and RCP8.5), and multiple soil and management information from agronomic surveys were used as input for DSSAT. The average impact of climate scenarios on grain yield among farms ranged between −9% and −39% across sites. Substantial variation in climate response exists across farms in the same farming zone with relative standard deviations from 8% to 117% at Nioro du Rip, 13% to 64% in Navrongo and 9% to 37% in Tamale across climate models. Variations in fertilizer application, planting dates and soil types explained the variation in the impact among farms. This study provides insight into the complexities of the impact of climate scenarios on maize yield and the need for better representation of heterogeneous farming systems for optimized outcomes in adaptation and resilience planning in smallholder systems.


Author(s):  
Emmanuel Mavhura ◽  
Desmond Manatsa ◽  
Terence Mushore

Small-scale rain-fed agriculture is the main livelihood in arid to semi-arid regions of subSaharan Africa. The area is characterised by erratic rainfall and frequent droughts, making the capacity for coping with temporal water shortages essential for smallholder farmers. Focusing on the Zambezi Valley, Zimbabwe, this study investigates the impact of drought on food security and the strategies used by smallholder farmers to cope with drought. We used meteorological data and interviews to examine the rainfall variability in the study area and the drought-coping mechanisms employed by smallholder famers respectively. The results show that there are various strategies used by smallholder farmers to cope with the impact of drought. These strategies include drought-tolerant crop production, crop variety diversification, purchasing cereals through asset sales, non-governmental organisations’ food aid and gathering wild fruit. However, consecutive droughts have resulted in high food insecurity and depletion of household assets during droughts. Smallholder farmers in the valley have also resorted to a number of measures taken before, during and after the drought. Still, these strategies are not robust enough to cope with this uncertainty


2020 ◽  
Vol 12 (19) ◽  
pp. 3226
Author(s):  
Daniel Cunningham ◽  
Paul Cunningham ◽  
Matthew E. Fagan

Global tree cover products face challenges in accurately predicting tree cover across biophysical gradients, such as precipitation or agricultural cover. To generate a natural forest cover map for Costa Rica, biases in tree cover estimation in the most widely used tree cover product (the Global Forest Change product (GFC) were quantified and corrected, and the impact of map biases on estimates of forest cover and fragmentation was examined. First, a forest reference dataset was developed to examine how the difference between reference and GFC-predicted tree cover estimates varied along gradients of precipitation and elevation, and nonlinear statistical models were fit to predict the bias. Next, an agricultural land cover map was generated by classifying Landsat and ALOS PalSAR imagery (overall accuracy of 97%) to allow removing six common agricultural crops from estimates of tree cover. Finally, the GFC product was corrected through an integrated process using the nonlinear predictions of precipitation and elevation biases and the agricultural crop map as inputs. The accuracy of tree cover prediction increased by ≈29% over the original global forest change product (the R2 rose from 0.416 to 0.538). Using an optimized 89% tree cover threshold to create a forest/nonforest map, we found that fragmentation declined and core forest area and connectivity increased in the corrected forest cover map, especially in dry tropical forests, protected areas, and designated habitat corridors. By contrast, the core forest area decreased locally where agricultural fields were removed from estimates of natural tree cover. This research demonstrates a simple, transferable methodology to correct for observed biases in the Global Forest Change product. The use of uncorrected tree cover products may markedly over- or underestimate forest cover and fragmentation, especially in tropical regions with low precipitation, significant topography, and/or perennial agricultural production.


Author(s):  
Caroline Dubbert ◽  
Awudu Abdulai

Abstract Many studies show that participation in contract farming has positive impacts on farm productivity and incomes. Most of the literature, however, does not take into account that contracts vary in their specifications, making empirical evidence scarce on the diverse impacts of different types of contracts. In this study, we investigate the driving forces of participation in marketing and production contracts, relative to spot markets. We also study the extent to which different contract types add additional benefits to smallholder farmers, using recent survey data of 389 cashew farmers in Ghana. To account for selection bias arising from observed and unobserved factors, we apply a multinomial endogenous switching regression method and implement a counterfactual analysis. The empirical results demonstrate that farmers who participate in production contracts obtain significantly higher cashew yields, cashew net revenues, and are more food secure compared to spot market farmers. We also find substantial heterogeneity in the impact of marketing and production contracts across scale of operation. Small sized farms that participate in production contracts tend to benefit the most. Marketing contracts, however, do not appear to benefit cashew farmers.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1477
Author(s):  
Antonio Marín-Martínez ◽  
Alberto Sanz-Cobeña ◽  
Mª Angeles Bustamante ◽  
Enrique Agulló ◽  
Concepción Paredes

In semi-arid vineyard agroecosystems, highly vulnerable in the context of climate change, the soil organic matter (OM) content is crucial to the improvement of soil fertility and grape productivity. The impact of OM, from compost and animal manure, on soil properties (e.g., pH, oxidisable organic C, organic N, NH4+-N and NO3−-N), grape yield and direct greenhouse gas (GHG) emission in vineyards was assessed. For this purpose, two wine grape varieties were chosen and managed differently: with a rain-fed non-trellising vineyard of Monastrell, a drip-irrigated trellising vineyard of Monastrell and a drip-irrigated trellising vineyard of Cabernet Sauvignon. The studied fertiliser treatments were without organic amendments (C), sheep/goat manure (SGM) and distillery organic waste compost (DC). The SGM and DC treatments were applied at a rate of 4600 kg ha−1 (fresh weight, FW) and 5000 kg ha−1 FW, respectively. The use of organic amendments improved soil fertility and grape yield, especially in the drip-irrigated trellising vineyards. Increased CO2 emissions were coincident with higher grape yields and manure application (maximum CO2 emissions = 1518 mg C-CO2 m−2 d−1). In contrast, N2O emissions, mainly produced through nitrification, were decreased in the plots showing higher grape production (minimum N2O emissions = −0.090 mg N2O-N m−2 d−1). In all plots, the CH4 fluxes were negative during most of the experiment (−1.073−0.403 mg CH4-C m−2 d−1), indicating that these ecosystems can represent a significant sink for atmospheric CH4. According to our results, the optimal vineyard management, considering soil properties, yield and GHG mitigation together, was the use of compost in a drip-irrigated trellising vineyard with the grape variety Monastrell.


2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Caroline Ward ◽  
Lindsay C. Stringer ◽  
Eleanor Warren-Thomas ◽  
Fahmuddin Agus ◽  
Merry Crowson ◽  
...  

AbstractThe Indonesian government committed to restoring over 2 million ha of degraded peatland by the end of 2020, mainly to reduce peat fires and greenhouse gas emissions. Although it is unlikely the government will meet this target, restoration projects are still underway. One restoration strategy involves blocking peatland drainage canals, but the consequences of this for smallholder farmers whose livelihoods are dependent on agriculture are unclear. This paper investigates perceived impacts of canal blocks on smallholder farmers and identifies factors that affect their willingness to accept canal blocks on their land. We use data from 181 household questionnaires collected in 2018 across three villages in Jambi province, Sumatra. We found that the majority of respondents would accept canal blocks on their farms, perceiving that the blocks would have no impact on yields or farm access, and would decrease fire risk. Respondents who would not accept blocks on their farms were more likely to use canals to access their farms and perceive that canal blocks would decrease yields. The majority of farmers unwilling to accept canal blocks did not change their mind when provided with an option of a block that would allow boat travel. Our results improve understanding of why some smallholders may be unwilling to engage with peatland restoration. Further research is needed to understand the impact of canal blocks on smallholders’ yields. Engaging with stakeholders from the outset to understand farmers’ concerns, and perceptions is key if the government is to succeed in meeting its peatland restoration target and to ensure that the costs and benefits of restoration are evenly shared between local stakeholders and other actors.


Author(s):  
Koen Beumer ◽  
Jac. A. A. Swart

AbstractThe discussion about the impact of agricultural biotechnology on Africa is deeply divided and contains widely diverging claims about the impact of biotechnology on African farmers. Building upon literature on the ‘good farmer’ that highlights that farmers identities are an important factor in explaining the success or failure of agricultural change, we argue that the identity of the farmer is an undervalued yet crucial aspect for understanding the debate about the impact of agricultural biotechnology on African farmers. In this article we therefore investigate what farmers’ identities are implicated in the arguments about the impact of biotechnology on African farmers. We aim to identify the main fault lines in different accounts of the African biotechnology farmer by analysing the identities ascribed to them in two prominent cases of controversy: the debates at the 2002 World Summit on Sustainable Development in Johannesburg and the discussion about the impact of biotechnology on smallholder farmers in the Makhathini flats in KwaZulu Natal, South Africa. Our findings demonstrate that arguments about biotechnology are informed by diverging conceptions of who the African farmer is, what is important for the African farmer, and what role the African farmer has in relation to agricultural biotechnology. These findings remain relevant for current discussions on gene editing technologies like CRISPR-Cas. Openly discussing these different views on the identity of smallholder farmers is crucial for moving forward in the biotechnology controversy and can inform future attempts to elicit the farmer’s voice.


Sign in / Sign up

Export Citation Format

Share Document