AN ALTERNATIVE APPROACH TO CALCULATING SECONDARY ARC CURRENT AND RECOVERY VOLTAGE OF A TRANSMISSION LINE

Author(s):  
Liqun Shang
Author(s):  
Baina He ◽  
Yadi Xie ◽  
Jingru Zhang ◽  
Nirmal-Kumar C. Nair ◽  
Xingmin He ◽  
...  

Abstract In the transmission line, the series compensation device is often used to improve the transmission capacity. However, when the fixed series capacitor (FSC) is used in high compensation series compensation device, the stability margin cannot meet the requirements. Therefore, thyristor controlled series compensator (TCSC) is often installed in transmission lines to improve the transmission capacity of the line and the stability of the system. For cost considerations, the hybrid compensation mode of FSC and TCSC is often adopted. However, when a single-phase grounding fault occurs in a transmission line with increased series compensation degree, the unreasonable distribution of FSC and TCSC will lead to the excessive amplitude of secondary arc current, which is not conducive to rapid arc extinguishing. To solve this problem, this paper is based on 1000 kV Changzhi-Nanyang-Jingmen UHV series compensation transmission system, using PSCAD simulation program to established UHV series compensation simulation model, The variation law of secondary arc current and recovery voltage during operation in fine tuning mode after adding TCSC to UHV transmission line is analyzed, and the effect of increasing series compensation degree on secondary arc current and recovery voltage characteristics is studied. And analyze the secondary arc current and recovery voltage when using different FSC and TCSC series compensation degree schemes, and get the most reasonable series compensation configuration scheme. The results show that TCSC compensation is more beneficial to arc extinguishing under the same series compensation. Compared with several series compensation schemes, it is found that with the increase of the proportion of TCSC, the amplitude of secondary arc current and recovery voltage vary greatly. Considering various factors, the scheme that is more conducive to accelerating arc extinguishing is chosen.


2014 ◽  
Vol 986-987 ◽  
pp. 330-333
Author(s):  
Ding Jun Wen ◽  
Xiu Bin Zhang ◽  
Hong Gang Chen ◽  
Feng Jiang ◽  
Ya Ming Sun

The overvoltage calculation of 750kV transmission line with series compensation has great significance on the design, insulation coordination and protection of the line. In this paper, a transient model of 750kV power transmission system with series compensation is established. Effects of different capacity on no-load capacitive rise overvoltage, single-phase grounding overvoltage, two-phase grounding overvoltage are calculated. Secondary arc current and recovery voltage of different series compensation capacity in single-phase grounding is also calculated.


Author(s):  
Yadi XIE ◽  
Baina HE ◽  
Lemiao WANG ◽  
Renzhuo JIANG ◽  
Yuyang ZHOU ◽  
...  

Abstract With the continuous expansion of the scale of power system, corridor resources of overhead transmission lines tend to be saturated in China, making AC/DC erection on the same tower a trend in future development. The AC/DC coupling effect will cause DC line to generate secondary arc current at the point of failure when transmission line fails, which affects the DC restart. On account of the mechanism of generating secondary arc current by AC/DC lines erected on the same tower, this paper uses PSCAD to establish simulation model for AC/DC erected on the same tower. And the effects of different fault locations, lengths of coupling sections, and different transposition modes of AC lines on the secondary arc current and recovery voltage of AC and DC lines are studied. The results show that secondary arc current on DC line is greatly affected by fault location and length of coupling line, and using different transposition modes of AC lines can reduce secondary arc current on the DC lines effectively. According to Yunguang UHV DC restart time sequence, setting the restart time sequence can increase the first restart deionization time to ensure the stable operation of the system.


Author(s):  
Zeynab Zandi ◽  
Keyhan Sheshyekani ◽  
Ebrahim Afjei

Abstract This paper investigates the effect of different bypassing schemes and grounding methods on the secondary arc current and the transient recovery voltage (TRV) of series compensated transmission lines. It is known that in series compensated lines, the peak value of the TRV may exceed the insulation strength. Furthermore, a secondary arc current is generated during a single line to ground fault mainly affected by the capacitive coupling between the healthy lines and the faulted line and can persist for seconds. The steadiness of secondary arc current prevents line reclosers from having a prompt closing to fulfill the system stability. This paper discusses different scenarios that can be employed to limit the secondary arc current consistency and to suppress a severe TRV during a single line to ground fault. A frequency domain analysis is conducted to better understand the nature of the secondary arc current. It is noted that an accurate arc model based upon the Kiziclay’s arc model is used in the simulations.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6388
Author(s):  
Woo-Young Lee ◽  
Jang-Un Jun ◽  
Ho-Seok Oh ◽  
Jun-Kyu Park ◽  
Yeon-Ho Oh ◽  
...  

In the study, an interrupting performance test on the 145 kV gas circuit breaker is performed according to three different gases: SF6, g3 (5% NovecTM4710 with 95% CO2), and CO2(70%)/O2(30%) gases. Thanks to research advancements, it is confirmed that CO2 and g3 (5% NovecTM 4710) gases, respectively, have 40% and 75% dielectric strength, compared to that of SF6 gas. The filling pressure and transient recovery voltage criteria of each gas were determined differently in order to compare the maximum interrupting performance of each gas. The pressure of SF6 gas was determined to be 5.5 bar, which is typically used in circuit breakers. The pressure of the other two gases was determined to be 8.0 bar (the maximum available pressure of the test circuit breaker) to find the maximum interrupting performance. Moreover, the rate-of-rise of transient recovery voltage of SF6 was determined as 10 kV/μs, which is the value at the state of maximum interrupting performance of the test circuit breaker with SF6. On the other hand, the rate-of-rise of transient recovery voltages of g3 (5% NovecTM4710 with 95% CO2) and CO2(70%)/O2(30%) gases were, respectively, determined as 4∼5 kV/μs to find the interruption available point. The characteristics of arc conductance, arc current, and arc voltage near the current zero, and post-arc current are analyzed to compare the interrupting performance, according to different arc-quenching gases. The arc current is measured using a current transformer (Rogowski coil), and a signal processing method of the arc current and arc voltage is introduced to increase the reliability of the interrupting performance results. As a result of the test, it is confirmed that the critical arc conductance for all test conditions converged within a certain range and the value is around 0.7 mS. In addition, the critical current slope just before the current zero-crossing during the interrupting process is shown to be 1.8 A/μs between interruption success and failure. Consequently, it is verified that the CO2(70%)/O2(30%) mixture and g3 (5% NovecTM4710 with 95% CO2) have a similar arc extinguishing performance and SF6 has a relatively higher extinguishing performance than that of CO2(70%)/O2(30%) mixture and g3 (5% NovecTM4710 with 95% CO2) under the aforementioned filling pressure and TRV conditions.


Sign in / Sign up

Export Citation Format

Share Document