Welding Robotic Systems with Visual Sensing and Real-Time Control of Dynamic Weld Pool During Pulsed GTAW

Author(s):  
S.B. Chen ◽  
Y. Zhang ◽  
T. Lin ◽  
T. Qiu ◽  
L. Wu
2021 ◽  
Author(s):  
Luca Muratore ◽  
Arturo Laurenzi ◽  
Nikos G. Tsagarakis

The widespread use of robotics in new application domains outside the industrial workplace settings requires robotic systems which demonstrate functionalities far beyond that of classical industrial robotic machines. The implementation of these capabilities inevitably increases the complexity of the robotic hardware, control a and software components. This chapter introduces the XBot software architecture for robotics, which is capable of Real-Time (RT) performance with minimum jitter at relatively high control frequency while demonstrating enhanced flexibility and abstraction features making it suitable for the control of robotic systems of diverse hardware embodiment and complexity. A key feature of the XBot is its cross-robot compatibility, which makes possible the use of the framework on different robots, without code modifications, based only on a set of configuration files. The design of the framework ensures easy interoperability and built-in integration with other existing software tools for robotics, such as ROS, YARP or OROCOS, thanks to a robot agnostic API called XBotInterface. The framework has been successfully used and validated as a software infrastructure for collaborative robotic arms as KUKA lbr iiwa/lwr 4+ and Franka Emika Panda, other than humanoid robots such as WALK-MAN and COMAN+, and quadruped centaur-like robots as CENTAURO.


Author(s):  
Gen’ichi Yasuda

This chapter deals with modeling, simulation, and implementation problems encountered in robotic manufacturing control systems. Extended Petri nets are adopted as a prototyping tool for expressing real-time control of robotic systems and a systematic method based on hierarchical Petri nets is described for their direct implementation. A coordination mechanism is introduced to coordinate the event activities of the distributed machine controllers through friability tests of shared global transitions. The proposed prototyping method allows a direct coding of the inter-task cooperation by robots and intelligent machines from the conceptual Petri net specification, so that it increases the traceability and the understanding of the control flow of a parallel application specified by a net model. This approach can be integrated with off-the-shelf real-time executives. Control software using multithreaded programming is demonstrated to show the effectiveness of the proposed method.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2411 ◽  
Author(s):  
Yuxiang Hong ◽  
Baohua Chang ◽  
Guodong Peng ◽  
Zhang Yuan ◽  
Xiangchun Hou ◽  
...  

Lack of fusion can often occur during ultra-thin sheets edge welding process, severely destroying joint quality and leading to seal failure. This paper presents a vision-based weld pool monitoring method for detecting a lack of fusion during micro plasma arc welding (MPAW) of ultra-thin sheets edge welds. A passive micro-vision sensor is developed to acquire clear images of the mesoscale weld pool under MPAW conditions, continuously and stably. Then, an image processing algorithm has been proposed to extract the characteristics of weld pool geometry from the acquired images in real time. The relations between the presence of a lack of fusion in edge weld and dynamic changes in weld pool characteristic parameters are investigated. The experimental results indicate that the abrupt changes of extracted weld pool centroid position along the weld length are highly correlated with the occurrences of lack of fusion. By using such weld pool characteristic information, the lack of fusion in MPAW of ultra-thin sheets edge welds can be detected in real time. The proposed in-process monitoring method makes the early warning possible. It also can provide feedback for real-time control and can serve as a basis for intelligent defect identification.


2000 ◽  
Vol 14 (1) ◽  
pp. 75-86 ◽  
Author(s):  
Maurizio Piaggio ◽  
Antonio Sgorbissa ◽  
Renato Zaccaria

2012 ◽  
pp. 577-593
Author(s):  
Gen’ichi Yasuda

This chapter deals with modeling, simulation, and implementation problems encountered in robotic manufacturing control systems. Extended Petri nets are adopted as a prototyping tool for expressing real-time control of robotic systems and a systematic method based on hierarchical Petri nets is described for their direct implementation. A coordination mechanism is introduced to coordinate the event activities of the distributed machine controllers through friability tests of shared global transitions. The proposed prototyping method allows a direct coding of the inter-task cooperation by robots and intelligent machines from the conceptual Petri net specification, so that it increases the traceability and the understanding of the control flow of a parallel application specified by a net model. This approach can be integrated with off-the-shelf real-time executives. Control software using multithreaded programming is demonstrated to show the effectiveness of the proposed method.


Robotica ◽  
1994 ◽  
Vol 12 (6) ◽  
pp. 491-503 ◽  
Author(s):  
François G. Pin ◽  
Yutaka Watanabe

SummaryTwo types of computer boards incorporating recently developed VLSI fuzzy inferencing chips have been developed to support the addition of qualitative reasoning capabilities to the real-time control of robotic systems. The design and operation of these boards are first reviewed and their use, in conjunction with our proposed Fuzzy Behaviorist approach, is discussed. This approach uses superposition of elemental sensor-based behaviors expressed in the Fuzzy Sets theoretic framework, to emulate "human-like" reasoning inrobotic systems.


Sign in / Sign up

Export Citation Format

Share Document