An Agent Execution Control Method for Content-based Information Retrieval with Time Constraints

Informatics ◽  
2010 ◽  
Author(s):  
A. Narishige ◽  
Y. Hara ◽  
K. Kinoshita ◽  
K. Murakami ◽  
N. Yamai
2011 ◽  
Vol E94-B (7) ◽  
pp. 1892-1900 ◽  
Author(s):  
Kazuhiko KINOSHITA ◽  
Atsushi NARISHIGE ◽  
Yusuke HARA ◽  
Nariyoshi YAMAI ◽  
Koso MURAKAMI

Author(s):  
Richard E. Hartman ◽  
Roberta S. Hartman ◽  
Peter L. Ramos

We have long felt that some form of electronic information retrieval would be more desirable than conventional photographic methods in a high vacuum electron microscope for various reasons. The most obvious of these is the fact that with electronic data retrieval the major source of gas load is removed from the instrument. An equally important reason is that if any subsequent analysis of the data is to be made, a continuous record on magnetic tape gives a much larger quantity of data and gives it in a form far more satisfactory for subsequent processing.


Author(s):  
Hilton H. Mollenhauer

Many factors (e.g., resolution of microscope, type of tissue, and preparation of sample) affect electron microscopical images and alter the amount of information that can be retrieved from a specimen. Of interest in this report are those factors associated with the evaluation of epoxy embedded tissues. In this context, informational retrieval is dependant, in part, on the ability to “see” sample detail (e.g., contrast) and, in part, on tue quality of sample preservation. Two aspects of this problem will be discussed: 1) epoxy resins and their effect on image contrast, information retrieval, and sample preservation; and 2) the interaction between some stains commonly used for enhancing contrast and information retrieval.


Author(s):  
Fox T. R. ◽  
R. Levi-Setti

At an earlier meeting [1], we discussed information retrieval in the scanning transmission ion microscope (STIM) compared with the electron microscope at the same energy. We treated elastic scattering contrast, using total elastic cross sections; relative damage was estimated from energy loss data. This treatment is valid for “thin” specimens, where the incident particles suffer only single scattering. Since proton cross sections exceed electron cross sections, a given specimen (e.g., 1 μg/cm2 of carbon at 25 keV) may be thin for electrons but “thick” for protons. Therefore, we now extend our previous analysis to include multiple scattering. Our proton results are based on the calculations of Sigmund and Winterbon [2], for 25 keV protons on carbon, using a Thomas-Fermi screened potential with a screening length of 0.0226 nm. The electron results are from Crewe and Groves [3] at 30 keV.


2001 ◽  
Vol 84 (9) ◽  
pp. 16-26
Author(s):  
Tadao Saito ◽  
Hitoshi Aida ◽  
Terumasa Aoki ◽  
Soichiro Hidaka ◽  
Tredej Toranawigtrai ◽  
...  

2008 ◽  
Vol 29 (3) ◽  
pp. 130-133 ◽  
Author(s):  
Corinna Titze ◽  
Martin Heil ◽  
Petra Jansen

Gender differences are one of the main topics in mental rotation research. This paper focuses on the influence of the performance factor task complexity by using two versions of the Mental Rotations Test (MRT). Some 300 participants completed the test without time constraints, either in the regular version or with a complexity reducing template creating successive two-alternative forced-choice tasks. Results showed that the complexity manipulation did not affect the gender differences at all. These results were supported by a sufficient power to detect medium effects. Although performance factors seem to play a role in solving mental rotation problems, we conclude that the variation of task complexity as realized in the present study did not.


Sign in / Sign up

Export Citation Format

Share Document