scholarly journals Grain Size Effect on Sensitization of Austenitic Stainless Steel

1988 ◽  
Vol 52 (8) ◽  
pp. 792-796 ◽  
Author(s):  
Tetsuya Akiyama ◽  
Toshio Terasaki
2007 ◽  
Vol 558-559 ◽  
pp. 253-258
Author(s):  
Nicolas Meyer ◽  
Yves Bréchet ◽  
Muriel Véron ◽  
Marc Mantel ◽  
Pierre Emmanuel Dubois ◽  
...  

Softening kinetics of two 17% chromium (Cr) stainless steel grades that differ in niobium (Nb) content are compared. In the experiments, we observed that a low Nb stabilization makes recrystallization nucleation much faster and prevents incomplete recrystallization. A qualitative interpretation, based on interaction with precipitates, is proposed and explains the main features of the softening kinetics as well as the microstructures obtained. For the Nb stabilized grade, magnetic losses were measured in the deformed state and after recrystallization. Above a specific magnetizing frequency, the deformed state led to smaller losses than the recrystallized state. These results are believed to be attributed to a grain size effect.


2020 ◽  
Author(s):  
Kum-Ok Jang ◽  
Il-Hwan Kim ◽  
Il-Hun Kim ◽  
Kye-Ryong Sin ◽  
Chol-Jin Kim

2014 ◽  
Vol 95 ◽  
pp. 187-191 ◽  
Author(s):  
V. Lacaille ◽  
C. Morel ◽  
E. Feulvarch ◽  
G. Kermouche ◽  
J.-M. Bergheau

2016 ◽  
Vol 123 ◽  
pp. 90-94 ◽  
Author(s):  
G.M. Cheng ◽  
W.Z. Xu ◽  
Y.Q. Wang ◽  
A. Misra ◽  
Y.T. Zhu

Author(s):  
Gap-Yong Kim ◽  
Muammer Koc ◽  
Jun Ni

Application of microforming in various research areas has received much attention due to the increased demand for miniature metallic parts that require mass production. For the accurate analysis and design of microforming process, proper modeling of material behavior at the micro/meso-scale is necessary by considering the size effects. Two size effects are known to exist in metallic materials. One is the “grain size” effect, and the other is the “feature/specimen size” effect. This study investigated the “feature/specimen size” effect and introduced a scaling model which combined both feature/specimen and grain size effects. Predicted size effects were compared with experiments obtained from previous research and showed a very good agreement. The model was also applied to forming of micro-features by coining. A flow stress model for Type 304 stainless steel taking into consideration the effect of the grain and feature size was developed and implemented into a finite element simulation tool for an accurate numerical analysis. The scaling model offered a simple way to model the size effect down to length scales of a couple of grains and extended the use of continuum plasticity theories to micro/meso-length scales.


Sign in / Sign up

Export Citation Format

Share Document