scholarly journals Room Temperature Superplaticity in Fine/Ultrafine Grained Materials Subjected to Severe Plastic Deformation

2019 ◽  
Vol 60 (7) ◽  
pp. 1159-1167 ◽  
Author(s):  
M. Demirtas ◽  
G. Purcek
2006 ◽  
Vol 114 ◽  
pp. 7-18 ◽  
Author(s):  
Ruslan Valiev

During the last decade severe plastic deformation (SPD) has become a widely known method of materials processing used for fabrication of ultrafine-grained materials with attractive properties. Nowadays SPD processing is rapidly developing and is on the verge of a transition from lab-scale research to commercial production. This paper focuses on several new trends in the development of SPD techniques for effective grain refinement, including those for commercial alloys and presents new SPD processing routes to produce bulk nanocrystalline materials.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
S. Farè ◽  
N. Lecis ◽  
M. Vedani

A study was carried out on aging behaviour of a 6082 alloy processed by two different severe plastic deformation techniques: ECAP and asymmetric rolling. Both techniques were able to generate an ultrafine-grained structure in samples processed at room temperature. It was stated that severe straining promotes marked changes in the postdeformation aging kinetics. The peaks of β′′/β′ transition phases were anticipated and of progressively reduced intensity over the coarse grained alloy. A further peak accounting for onset of recrystallization also appeared in the most severely deformed samples. Full consistency in peak shape and position was found when comparing materials processed by ECAP and asymmetric rolling. Isothermal aging treatments performed at 180°C revealed that in the severely deformed samples, aging became so fast that the hardness curves continuously decreased due to overwhelming effects of structure restoration. On the contrary, aging at 130°C offers good opportunities for fully exploiting the precipitate hardening effects in the ultrafine-grained alloy.


Author(s):  
Mihaela Banu ◽  
Mitica Afteni ◽  
Alexandru Epureanu ◽  
Valentin Tabacaru

There are several severe plastic deformation processes that transform the material from microsized grains to the nanosized grains under large deformations. The grain size of a macrostructure is generally 300 μm. Following severe plastic deformation it can be reached a grain size of 200 nm and even less up to 50 nm. These structures are called ultrafine grained materials with nanostructured organization of the grains. There are severe plastic deformation processes like equal angular channel, high pressure torsion which lead to a 200 nm grain size, respectively 100 nm grain size. Basically, these processes have a common point namely to act on the original sized material so that an extreme deformation to be produced. The severe plastic deformation processes developed until now are empirically-based and the modeling of them requires more understanding of how the materials deform. The macrostructural material models do not fit the behavior of the nanostructured materials exhibiting simultaneously high strength and ductility. The existent material laws need developments which consider multi-scale analysis. In this context, the present paper presents a laboratory method to obtain ultrafine grains of an aluminum alloy (Al-Mg) that allows the microstructure observations and furthermore the identification of the stress–strain response under loadings. The work is divided into (i) processing of the ultrafine-grained aluminum alloy using a laboratory-scale process named in-plane controlled multidirectional shearing process, (ii) crystallographic analysis of the obtained material structure, (iii) tensile testing of the ultrafine-grained aluminum specimens for obtaining the true stress-strain behavior. Thus, the microscale phenomena are explained with respect to the external loads applied to the aluminum alloy. The proposed multi-scale analysis gives an accurate prediction of the mechanical behavior of the ultrafine-grained materials that can be further applied to finite element modeling of the microforming processes.


2008 ◽  
Vol 604-605 ◽  
pp. 97-111 ◽  
Author(s):  
Roberto B. Figueiredo ◽  
Megumi Kawasaki ◽  
Terence G. Langdon

Processing through the application of severe plastic deformation (SPD) provides an opportunity for achieving very significant grain refinement in bulk metals. Since the occurrence of superplastic flow generally requires a grain size smaller than ~10 µm, it is reasonable to anticipate that materials processed by SPD will exhibit superplastic ductilities when pulled in tension at elevated temperatures. This paper summarizes the fundamental principles of SPD processing and describes recent results demonstrating the occurrence of exceptional superplastic flow in these ultrafine-grained materials.


2015 ◽  
Vol 5 ◽  
pp. 111-126
Author(s):  
Evgeny V. Naydenkin ◽  
Galina P. Grabovetskaya ◽  
I.P. Mishin

Experimental studies on the grain boundary diffusion and processes controlled by it in the ultrafine-grained metallic materials produced by various methods of severe plastic deformation are reviewed. Correlation between the increased diffusion permeability of grain boundaries and features of recrystallization and deformation development in these materials possessing the non-equilibrium state of grain boundaries formed during severe plastic deformation in the temperature range of T < 0.35Tm is demonstrated and analyzed.


2016 ◽  
Vol 838-839 ◽  
pp. 398-403 ◽  
Author(s):  
Marina Tikhonova ◽  
Nariman Enikeev ◽  
Ruslan Z. Valiev ◽  
Andrey Belyakov ◽  
Rustam Kaibyshev

The formation of submicrocrystalline structure during severe plastic deformation and its effect on mechanical properties of an S304H austenitic stainless steel with chemical composition of Fe – 0.1C – 0.12N – 0.1Si – 0.95Mn – 18.4Cr – 7.85Ni – 3.2Cu – 0.5Nb – 0.01P – 0.006S (all in mass%) were studied. The severe plastic deformation was carried out by high pressure torsion (HPT) at two different temperatures, i.e., room temperature or 400°C. HPT at room temperature or 400°C led to the formation of a fully austenitic submicrocrystalline structure. The grain size and strength of the steels with ultrafine-grained structures produced by cold or warm HPT were almost the same. The ultimate tensile strengths were 1950 MPa and 1828 MPa after HPT at room temperature and 400°C, respectively.


Sign in / Sign up

Export Citation Format

Share Document