scholarly journals Effect of Deformation Heating on the Flow Behavior and Processing Maps of Al–Zn–Mg–Cu Alloy

2020 ◽  
Vol 61 (7) ◽  
pp. 1414-1420
Author(s):  
Qunying Yang ◽  
Xiaoyong Liu ◽  
Guodong Liu ◽  
Guoqing Zhu
Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2021
Author(s):  
Oleksandr Lypchanskyi ◽  
Tomasz Śleboda ◽  
Aneta Łukaszek-Sołek ◽  
Krystian Zyguła ◽  
Marek Wojtaszek

The flow behavior of metastable β titanium alloy was investigated basing on isothermal hot compression tests performed on Gleeble 3800 thermomechanical simulator at near and above β transus temperatures. The flow stress curves were obtained for deformation temperature range of 800–1100 °C and strain rate range of 0.01–100 s−1. The strain compensated constitutive model was developed using the Arrhenius-type equation. The high correlation coefficient (R) as well as low average absolute relative error (AARE) between the experimental and the calculated data confirmed a high accuracy of the developed model. The dynamic material modeling in combination with the Prasad stability criterion made it possible to generate processing maps for the investigated processing temperature, strain and strain rate ranges. The high material flow stability under investigated deformation conditions was revealed. The microstructural analysis provided additional information regarding the flow behavior and predominant deformation mechanism. It was found that dynamic recovery (DRV) was the main mechanism operating during the deformation of the investigated β titanium alloy.


Author(s):  
Li-ying Song ◽  
Xiu-hua Gao ◽  
Ming-ming Wang ◽  
Qi-he Xue ◽  
R. Devesh Kumar Misra ◽  
...  

2018 ◽  
Vol 34 (2) ◽  
pp. 309-320 ◽  
Author(s):  
Shikang Li ◽  
Luoxing Li ◽  
Hong He ◽  
Guan Wang

Abstract


2019 ◽  
Vol 50 (11) ◽  
pp. 5314-5323 ◽  
Author(s):  
Krystian Zyguła ◽  
Marek Wojtaszek ◽  
Oleksandr Lypchanskyi ◽  
Tomasz Śleboda ◽  
Grzegorz Korpała ◽  
...  

Abstract The hot deformation behavior of Ti-10V-2Fe-3Al alloy obtained by the powder metallurgy (PM) method was investigated. Material for the research was produced by blending of elemental powders followed by uniaxial hot pressing. Thermomechanical tests of Ti-10V-2Fe-3Al compacts were carried out to determinate the stress-strain relationships at the temperature range of 800 °C to 1000 °C and strain rate between 0.01 and 10 s−1. Based on the dynamic material model (DMM) theory, processing maps at constant strain value were developed using data obtained from hot compression tests. The processing maps were elaborated for the final strain value, which was 0.9, and with flow instability criterion domains applied to it. Two critical regions associated with the flow behavior of the investigated material were revealed. Microstructural changes during hot deformation at various temperatures and strain rates were discussed. The correlation between calculated efficiency of power dissipation, flow instability criterion, and microstructure evolution was determined. The presence of defects was confirmed in regions predicted by the instability maps. The microstructure of the investigated alloy, corresponding to the high efficiency of power dissipation characterized by the occurrence of dynamic recrystallization (DRX) phenomena, was also shown. Additionally, average hardness values in relation to variable process parameters were designated. Based on the conducted studies and analysis, processing windows for Ti-10V-2Fe-3Al alloy compacts were proposed.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1743 ◽  
Author(s):  
Lei Luo ◽  
Zhiyi Liu ◽  
Song Bai ◽  
Juangang Zhao ◽  
Diping Zeng ◽  
...  

The hot deformation behavior of an Al-Zn-Mg-Cu alloy was investigated by hot compression test at deformation temperatures varying from 320 to 440 °C with strain rates ranging from 0.01 to 10 s−1. The results show that the Mg(Zn, Cu)2 particles as a result of the sufficient static precipitation prior to hot compression have an influence on flow softening. A constitutive model compensated with strain was developed from the experimental results, and it proved to be accurate for predicting the hot deformation behavior. Processing maps at various strains were established. The microstructural evolution demonstrates that the dominant dynamic softening mechanism stems from dynamic recovery (DRV) and partial dynamic recrystallization (DRX). The recrystallization mechanism is continuous dynamic recrystallization (CDRX). The microstructure observations are in good agreement with the results of processing maps. On account of the processing map and microstructural observation, the optimal hot processing parameters at a strain of 0.6 are at deformation temperature range of 390–440 °C and strain rate range of 0.010–0.316 s−1 with a peak efficiency of 0.390.


2017 ◽  
Vol 698 ◽  
pp. 786-793 ◽  
Author(s):  
Shangwu Zeng ◽  
Aimin Zhao ◽  
Haitao Jiang ◽  
Yusuo Ren

2013 ◽  
Vol 712-715 ◽  
pp. 58-64
Author(s):  
Jing Qi Zhang ◽  
Hong Shuang Di ◽  
Xiao Yu Wang

In the present study, deformation heating generated by plastic deformation and its effect on the processing maps of Ti-15-3 titanium alloy were investigated. For this purpose, hot compression tests were performed on a Gleeble-3800 thermo-mechanical simulator in the temperature range of 850-1150 °C and strain rate range of 0.001-10 s1. The temperature rise due to deformation heating was calculated and the as-measured flow curves were corrected for deformation heating. Using the as-measured and corrected flow stress data, the processing maps for Ti-15-3 titanium alloy at a strain of 0.5 were developed on the basis Murty‘s and Babu’s instability criteria. The results show that both the instability maps based the two instability criteria are essentially similar and are characterized by an unstable region occurring at strain rates higher than 0.1 s1for almost the entire temperature range tested. The unstable regions are overestimated from the as-measured data due to the effect of deformation heating, indicating a better workability after correcting the effect of deformation heating. This is further conformed by the analysis based on strain rate sensitivity.


2019 ◽  
Vol 949 ◽  
pp. 57-65 ◽  
Author(s):  
Madlen Ullmann ◽  
Matthias Schmidtchen ◽  
Kristina Kittner ◽  
Thorsten Henseler ◽  
Rudolf Kawalla ◽  
...  

Deformation behavior of an as-cast Mg-6.8Y-2.5Zn-0.4Zr alloy during plane strain compression was characterized in present work by high-temperature testing. Based on the experimental data, the values of strain rate sensitivity, efficiency of power dissipation and the instability parameter under the condition of various hot working parameters were investigated. Processing maps were established by superimposing the instability map over the power dissipation map, this being connected with microstructural evolution analysis in the hot deformation processes. Accompanied microstructure characterization of the binary α-Mg/ Long Period Stacking Ordered (LPSO) microstructure reveals that the flow behavior is related to the deformation mechanisms. At lower temperatures (350 – 400 °C) formation of kink bands is observed, which normally occur when deformation twinning is inhibited and other slip systems are strongly hindered by the complex LPSO structures. Dynamic recrystallization (DRX) was initiated at higher temperatures above 400 °C, influencing the softening behavior of the material significantly. DRX was the main softening mechanism when deformation takes place at 500 °C and the kink band deformation decreased.


Author(s):  
Jing Yin ◽  
Shiqing Wu ◽  
Zhenlun Song ◽  
Cheng Xu ◽  
Qi Cui

Abstract Isothermal hot compression tests of the CuZn39Pb2 continuous casting bar were carried out at 650 - 750 °C and strain rates of 0.1 - 50 s-1. After the experimental data were obtained, processing maps were constructed and discussed on the basis of the Prasad, Murty and Malas instability criteria to critically evaluate the flow behavior of the CuZn39Pb2 continuous casting bar. The microstructure suggested that the processing map based on the Murty instability criterion was suitable for optimizing the process parameters of the CuZn39Pb2. The relationships between the characteristics of processing maps and the deformation mechanisms under different strains were analyzed on the basis of Murty instability criterion. Considering the theoretical analysis results and energy consumption economy, 690 °C ≤ T ≤ 720 °C with 1 s-1 ≤ έ ≤ 3 s-1 are the best process parameters for CuZn39Pb2 forging.


2012 ◽  
Vol 578 ◽  
pp. 202-205
Author(s):  
Guo Qing Lin

The hot deformation behavior of Zr-4 alloy was studied in the temperature range 650-900°C and strain rate range 0.005-50s-1 using processing maps. The processing maps revealed three domains: the first occurs in the temperature range 780-820°C and strain rate range 0.005-0.05s-1, and has a peak efficiency of 45% at 790°C and 0.005s-1; the mechanism is the dynamic recrystallization. The second occurs in the temperature range greater than 900°C and strain rate range 0.05-0.8s-1, and has a peak efficiency of 40% at 900°C and 0.5s-1, which are the domains of dynamic recovery. In addition, the instability zones of flow behavior can also be recognized by the maps in the temperature range 650-780°C and strain rate range 0.01-0.1s-1, which should be strictly avoided in the processing of the material. Zr-4 alloy is the material for pressure tube applications in nuclear reactors and has better strength and a lower rate of hydrogen uptake compared to other materials under similar service conditions.


Sign in / Sign up

Export Citation Format

Share Document