scholarly journals Effect of Dy Addition on the Thermal Stability and Magnetic Properties of the Fe–Co–Nd–B Amorphous Alloys with Supercooled Liquid Region

2000 ◽  
Vol 41 (6) ◽  
pp. 696-700 ◽  
Author(s):  
Wei Zhang ◽  
Mitsuhide Matsusita ◽  
Akihisa Inoue
Open Physics ◽  
2004 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Shapaan ◽  
J. Lábár ◽  
L. Varga ◽  
J. Lendvai

AbstractGlass-forming ability (GFA) and thermal stability of Fe62Nb8B30, Fe62Nb6Zr2B30 and Fe72Zr8B20 at % amorphous alloys were investigated by calorimetric (DSC and DTA) measurements. The crystallization kinetics was studied by DSC in the mode of continuous versus linear heating and it was found that both the glass transition temperature, Tg, and the crystallization peak temperature, Tp, display strong dependence on the heating rate. The partial replacement of Nb by Zr leads to lower Tg and Tx temperatures and causes a decrease of the supercooled liquid region. JMA analysis of isothermal transformation data measured between Tg and Tx suggests that the crystallization of the Fe62Nb8B30 and Fe62Nb6Zr2B30 amorphous alloys take place by three-dimensional growth with constant nucleation rate. Nb enhances the precipitation of the metastable Fe23B6 phase and stabilizes it up to the third crystallization stage. Zr addition increases the lattice constant of Fe23B6 and, at the same time, decreases the grain size.


Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 881
Author(s):  
Darling Perea ◽  
Carolina Parra ◽  
Parthiban Ramasamy ◽  
Mihai Stoica ◽  
Jürgen Eckert ◽  
...  

Alloying elements play an important role in adjusting the magnetic and thermal properties of Fe-based amorphous alloys. In this work, the effect of Mo addition on the thermal stability, structural evolution, and magnetic properties of Fe76Si9B10P5 metallic glass was studied. The study revealed that the substitution of a small amount of Mo (1 at.%) for Si enhances the glass-forming ability (GFA) but reduces the thermal stability of the alloy, causing a reduction of the supercooled liquid region. Substitution of up to 3 at.% Mo for Si lowers the Curie temperature from 677 to 550 K and the saturation magnetization drops from 160 to 138 Am2/kg. The structural evolution was evaluated by annealing the glassy samples at different temperatures, revealing that the crystallization proceeds in multiple steps, beginning with the formation of different iron borides (FeB, Fe2B, FeB2 and Fe23B6) followed by transformation to a mixture of more stable phases.


Sign in / Sign up

Export Citation Format

Share Document