scholarly journals Structural and Phase Evolution upon Annealing of Fe76Si9−xB10P5Mox (x = 0, 1, 2 and 3) Alloys

Metals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 881
Author(s):  
Darling Perea ◽  
Carolina Parra ◽  
Parthiban Ramasamy ◽  
Mihai Stoica ◽  
Jürgen Eckert ◽  
...  

Alloying elements play an important role in adjusting the magnetic and thermal properties of Fe-based amorphous alloys. In this work, the effect of Mo addition on the thermal stability, structural evolution, and magnetic properties of Fe76Si9B10P5 metallic glass was studied. The study revealed that the substitution of a small amount of Mo (1 at.%) for Si enhances the glass-forming ability (GFA) but reduces the thermal stability of the alloy, causing a reduction of the supercooled liquid region. Substitution of up to 3 at.% Mo for Si lowers the Curie temperature from 677 to 550 K and the saturation magnetization drops from 160 to 138 Am2/kg. The structural evolution was evaluated by annealing the glassy samples at different temperatures, revealing that the crystallization proceeds in multiple steps, beginning with the formation of different iron borides (FeB, Fe2B, FeB2 and Fe23B6) followed by transformation to a mixture of more stable phases.

Open Physics ◽  
2004 ◽  
Vol 2 (1) ◽  
Author(s):  
M. Shapaan ◽  
J. Lábár ◽  
L. Varga ◽  
J. Lendvai

AbstractGlass-forming ability (GFA) and thermal stability of Fe62Nb8B30, Fe62Nb6Zr2B30 and Fe72Zr8B20 at % amorphous alloys were investigated by calorimetric (DSC and DTA) measurements. The crystallization kinetics was studied by DSC in the mode of continuous versus linear heating and it was found that both the glass transition temperature, Tg, and the crystallization peak temperature, Tp, display strong dependence on the heating rate. The partial replacement of Nb by Zr leads to lower Tg and Tx temperatures and causes a decrease of the supercooled liquid region. JMA analysis of isothermal transformation data measured between Tg and Tx suggests that the crystallization of the Fe62Nb8B30 and Fe62Nb6Zr2B30 amorphous alloys take place by three-dimensional growth with constant nucleation rate. Nb enhances the precipitation of the metastable Fe23B6 phase and stabilizes it up to the third crystallization stage. Zr addition increases the lattice constant of Fe23B6 and, at the same time, decreases the grain size.


2014 ◽  
Vol 790-791 ◽  
pp. 509-514 ◽  
Author(s):  
Kinga Tomolya ◽  
Dóra Janovszky ◽  
Anna Sycheva

The effect of nickel addition was studied in the CuZr system creating alloys with near eutectic composition. Nickel and aluminum have been regarded as useful elements to improve the plasticity, thermal stability of the CuZr-based amorphous alloys. Cu49Zr45Al6and (Cu49Zr45Al6)95Ni5were selected because of the good glass-forming ability. After 15 h of milling the structure of the powders was amorphous based on the XRD analysis. By adding nickel, the crystallization temperature (Tx) shifted to higher temperatures compared to CuZrAl alloy. The value of supercooled liquid region was 64 K, which means CuZrAl has a comparatively high glass forming ability.


Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 383 ◽  
Author(s):  
Xuan Liu ◽  
Xingfu Wang ◽  
Yongli Si ◽  
Xiaokang Zhong ◽  
Fusheng Han

In this study, the formation and crystallization of the Al70Fe12.5V12.5Nb5 amorphous alloys has been investigated. The addition of Nb enhances the supercooled liquid region and glass forming ability of the Al-Fe-V amorphous alloys. The Al70Fe12.5V12.5Nb5 amorphous alloy exhibits two distinct crystallization steps and a large supercooled liquid region at more than 100 K. Kissinger and Ozawa analyses showed that the two activation energies for crystallization (Ex) were estimated to be 366.3 ± 23.9 and 380.5 ± 23.9 kJ/mol. Large supercooled liquid regions are expected to gain an application field of Al-based amorphous alloys.


2007 ◽  
Vol 539-543 ◽  
pp. 2767-2772
Author(s):  
Pee Yew Lee ◽  
S.S. Hung ◽  
Jason S.C. Jang ◽  
Giin Shan Chen

In the current study, the amorphization behavior of mechanically alloyed Ni57Zr20Ti22Pb1 powder was examined in details. The conventional X-ray diffraction results confirm that the fully amorphous powders formed after 5 hours of milling. The thermal stability of the Ni57Zr20Ti22Pb1 amorphous powders was investigated by differential scanning calorimeter (DSC). As the results demonstrated, the glass transition temperature (Tg) and the crystallization temperature (Tx) are 760 K and 850 K, respectively. The supercooled liquid region is 90 K. The appearance of wide supercooled liquid region may be mainly due to the Pb additions which cause the increasing differences in atomic size of mechanically alloyed Ni57Zr20Ti22Pb1 powders.


2008 ◽  
Vol 23 (3) ◽  
pp. 745-754 ◽  
Author(s):  
Y.Y. Li ◽  
C. Yang ◽  
W.P. Chen ◽  
X.Q. Li

Amorphous Ti66Nb13Cu8Ni6.8Al6.2 alloy powders with different tungsten carbide (WC) contents were synthesized by mechanical alloying. Outstanding differences in particle size, thermal stability, glass-forming ability, and phase evolution are found for the synthesized Ti-based glassy powders with different WC contents. This is attributed to the fact that the WC was partially alloyed into the glassy matrix and the matrix element Ti was also partially alloyed into the WC particles. The obtained glassy powders exhibit a wide supercooled liquid region above 64 K. Meanwhile, the main crystalline phase is the ductile β-Ti with a high volume fraction in the crystallized alloy powders. These two aspects offer the possibility of easily preparing a plasticity-enhanced bulk composite in the supercooled liquid region by powder metallurgy, which couples the nanosized WC particles with in situ precipitated ductile β-Ti phase.


1999 ◽  
Vol 601 ◽  
Author(s):  
J. Wadsworth ◽  
T.G. Nieh

AbstractBulk amorphous alloys have many unique properties, e.g., superior strength and hardness, excellent corrosion resistance, reduced sliding friction and improved wear resistance, and easy formability in a viscous state. These properties, and particularly easy formability, are expected to lead to applications in the fields of near-net-shape fabrication of structural components. Whereas large tensile ductility has generally been observed in the supercooled liquid region in metallic glasses, the exact deformation mechanism, and in particular whether such alloys deform by Newtonian viscous flow, remains a controversial issue. In this paper, existing data are analyzed and an interpretation for the apparent controversy is offered. In addition, new results obtained from an amorphous alloy (composition: Zr–10Al–5Ti–17.9Cu–14.6Ni, in at. %) are presented. Structural evolution during plastic deformation is particularly characterized. It is suggested that the appearance of non-Newtonian behavior is a result of the concurrent crystallization of the amorphous structure during deformation.


2000 ◽  
Vol 644 ◽  
Author(s):  
Y.C. Kim ◽  
S. Yi ◽  
W.T. Kim ◽  
D.H. Kim

AbstractThe thermal stability and crystallization behavior of melt spun amorphous Ti50Cu35Ni15-xSnx (x=0, 3, 5, 7) alloys has been studied in by thermal analysis (DSC and DTA) and X-ray diffractometry. Partial replacement of Ni by Sn up to 5 at % in Ti50Cu35Ni15 alloy improved thermal stability and glass forming ability. The onset temperature of the first exotherm increased from 739 to 756 K with increasing Sn content x from 0 to 5, and then decreased to 745 K for the alloy with x=7 due to change in crystallization sequence. Melt spun amorphous Ti50Cu35Ni12Sn3 and Ti50Cu35Ni10Sn5 alloys exhibit ΔTx exceeding 78 and 76 K, respectively, which is significantly larger than ΔTx of 46 K in Ti50Cu35Ni15 alloy. Amorphous Ti50Cu35Ni15 alloy crystallized by precipitation of supersaturated cubic Ti(Ni,Cu) phase followed by decomposition into a mixture of TiCu and TiNi at higher temperature. Amorphous Ti50Cu35Ni15-xSnx (x=3, 5) phase crystallized by precipitation of cubic Ti(Ni,Cu) phase, followed by transformation into a mixture of TiNi, TiCu, Ti3Sn phases. Amorphous Ti50Cu32Ni8Sn7 phase crystallized by co- precipitation of cubic Ti(Ni,Cu) phase and unidentified phase, followed by transformation into a mixture of TiNi, TiCu, Ti3Sn phases.


Sign in / Sign up

Export Citation Format

Share Document