scholarly journals The Advanced Super Invar Alloys with Zero Thermal Expansion for Space Telescopes

Author(s):  
Kotaro ONA ◽  
Naoki SAKAGUCHI ◽  
Haruyasu OHNO ◽  
Shin UTSUNOMIYA
2017 ◽  
Vol 265 ◽  
pp. 807-810
Author(s):  
A.S. Zhilin ◽  
S.V. Grachev ◽  
S.M. Nikiforova

Metallography analysis of invar alloys crystallized with different cooling rates has been carried out. The study has demonstrated that velocity of crystallization has an impact on the dispersity of graphite. The higher velocity of cooling, the more dispersive graphite is. The volume percentage of graphite in alloy, crystallized with high cooling rate, is lower than compared with low cooling rate. Crystallization with low cooling rate leads to the reduction of the amount of carbon into γ-phase. The coefficient of thermal expansion is basically depends on the amount of carbon into γ-phase.


2020 ◽  
Vol 34 (31) ◽  
pp. 2050297
Author(s):  
Liming Dong ◽  
Zhaopeng Yu ◽  
Xianjun Hu ◽  
Fang Feng

The effects of doping with different Mo contents on the microstructure and properties of Fe36Ni Invar alloys were investigated. The results show that when 0.9 wt.% Mo and 1.8 wt.% Mo were added to Fe36Ni, the tensile strengths of the hot rolled alloys were 46 and 61 MPa higher than that of the 0 wt.% Mo sample, respectively. With an increase in Mo content from 0.9 to 1.8 wt.%, the solution temperature of the highest hardness after heat treatment increased from 800[Formula: see text]C to 850[Formula: see text]C, respectively. The addition of 0.9 wt.% Mo refined the average grain size from 37 to 15 [Formula: see text]m, and an excessive amount of Mo (1.8 wt.%) did not refine the grains further. After Mo was added, the precipitates on the original grain boundaries changed into nanoprecipitates dispersed in the grain boundaries and inside the grains. Mo was present in the alloy in the form of a carbide and in solid solution, which affected the magnetic lattice effect and increased the thermal expansion coefficient of the alloy. However, upon comparing the samples doped with 0 wt.% Mo, 0.9 wt.% Mo and 1.8 wt.% Mo, it was found that the addition of 0.9 wt.% Mo not only refined the grain size and improved the mechanical properties of the alloy but also led to a low coefficient of thermal expansion (CTE) over the range from 20[Formula: see text]C to 300[Formula: see text]C.


1972 ◽  
Vol 8 (3) ◽  
pp. 668-668
Author(s):  
W. Carr ◽  
D. Colling

2002 ◽  
Vol 8 (3) ◽  
pp. 247-252 ◽  
Author(s):  
Bong-Seo Kim ◽  
Kyung-Jae Yoo ◽  
Byung-Geol Kim ◽  
Hee-Woong Lee

1981 ◽  
Vol 17 (6) ◽  
pp. 2701-2703 ◽  
Author(s):  
K. Fukamichi ◽  
H. Kimura ◽  
M. Kikuchi ◽  
T. Masumoto

2017 ◽  
Vol 373 ◽  
pp. 146-149
Author(s):  
Wen Deng ◽  
Li Xia Li ◽  
Shou Lei Xu ◽  
Wen Chun Zhang ◽  
Yu Yang Huang ◽  
...  

The microdefects, the thermal expansion coefficients and the magnetization -temperature curves of the Fe64Ni36-xCox (x=1~10) were characterized by means of positron lifetime, X-ray diffraction, Michelson's interferometer and VSM modular on PPMS, respectively. The Fe64Ni30Co6 alloy is a mixture of BCC and FCC structures. With the Co content increasing in Fe64Ni36-xCox alloys, the BCC phase increases, while the FCC phase decreases. In comparison with other Fe64Ni36-xCox alloys, the Fe64Ni31Co5 alloy has a rather high magnetization at temperature lower than Tc, a relatively large change of the magnetization with the temperature near Tc, and a rather low thermal expansion coefficient.


Sign in / Sign up

Export Citation Format

Share Document