scholarly journals Three-dimensional observation of collagen fibril in the masseter muscle tendon of mouse by atomic force microscopy(AFM).

1998 ◽  
Vol 40 (1) ◽  
pp. 17-21
Author(s):  
Michiko Watanabe ◽  
Miya Kobayashi ◽  
Hideki Mizutani ◽  
Minoru Ueda
2021 ◽  
Vol 129 (3) ◽  
pp. 030901
Author(s):  
Hossein J. Sharahi ◽  
Mohsen Janmaleki ◽  
Laurene Tetard ◽  
Seonghwan Kim ◽  
Hamed Sadeghian ◽  
...  

2015 ◽  
Vol 6 ◽  
pp. 1183-1191 ◽  
Author(s):  
Colin A Grant ◽  
Peter C Twigg ◽  
Richard Baker ◽  
Desmond J Tobin

Tattooing has long been practised in various societies all around the world and is becoming increasingly common and widespread in the West. Tattoo ink suspensions unquestionably contain pigments composed of nanoparticles, i.e., particles of sub-100 nm dimensions. It is widely acknowledged that nanoparticles have higher levels of chemical activity than their larger particle equivalents. However, assessment of the toxicity of tattoo inks has been the subject of little research and ink manufacturers are not obliged to disclose the exact composition of their products. This study examines tattoo ink particles in two fundamental skin components at the nanometre level. We use atomic force microscopy and light microscopy to examine cryosections of tattooed skin, exploring the collagen fibril networks in the dermis that contain ink nanoparticles. Further, we culture fibroblasts in diluted tattoo ink to explore both the immediate impact of ink pigment on cell viability and also to observe the interaction between particles and the cells.


2012 ◽  
Vol 20 (8) ◽  
pp. 916-922 ◽  
Author(s):  
C.-Y. Wen ◽  
C.-B. Wu ◽  
B. Tang ◽  
T. Wang ◽  
C.-H. Yan ◽  
...  

2011 ◽  
Vol 82 (2) ◽  
pp. 023707 ◽  
Author(s):  
Sang-Joon Cho ◽  
Byung-Woon Ahn ◽  
Joonhui Kim ◽  
Jung-Min Lee ◽  
Yueming Hua ◽  
...  

2004 ◽  
Vol 18 (4) ◽  
pp. 587-596 ◽  
Author(s):  
T. A. Doneva ◽  
H. B. Yin ◽  
P. Stephens ◽  
W. R. Bowen ◽  
D. W. Thomas

An engineering approach to the development of biomaterials for promotion of wound healing emphasises the importance of a well‒controlled architecture and concentrates on optimisation of morphology and surface chemistry to stimulate guidance of the cells within the wound environment. A series of three‒dimensional porous scaffolds with 80–90% bulk porosity and fully interconnected macropores were prepared from two biodegradable materials – cellulose acetate (CA) and poly (lactic‒co‒glycolic acid) (PLGA) through the phase inversion mechanism of formation. Surface morphology of obtained scaffolds was determined using atomic force microscopy (AFM) in conjunction with optical microscopy. Scanning Electron Microscopy (SEM) was applied to characterise scaffolds bulk morphology. Biocompatibility and biofunctionality of the prepared materials were assessed through a systematic study of cell/material interactions using atomic force microscopy (AFM) methodologies together within vitrocellular assays. Preliminary data with human fibroblasts demonstrated a positive influence of both scaffolds on cellular attachment and growth. The adhesion of cells on both biomaterials were quantified by AFM force measurements in conjunction with a cell probe technique since, for the first time, a fibroblast probe has been successfully developed and optimal conditions of immobilisation of the cells on the AFM cantilever have been experimentally determined.


Sign in / Sign up

Export Citation Format

Share Document