L-Theanine Activates the Browning of White Adipose Tissue through the AMPK/α-Ketoglutarate/Prdm16 Axis and Ameliorates Diet-induced Obesity in Mice

Diabetes ◽  
2021 ◽  
pp. db201210
Author(s):  
Wan-Qiu Peng ◽  
Gang Xiao ◽  
Bai-Yu Li ◽  
Ying-Ying Guo ◽  
Liang Guo ◽  
...  
2021 ◽  
Author(s):  
Wan-Qiu Peng ◽  
Gang Xiao ◽  
Bai-Yu Li ◽  
Ying-Ying Guo ◽  
Liang Guo ◽  
...  

L-Theanine is a nonprotein amino acid with much beneficial efficacy. We found that intraperitoneal treatment of the mice with L-Theanine(100mg/kg/day) enhanced adaptive thermogenesis and induced the browning of inguinal white adipose tissue (iWAT) with elevated expression of Prdm16, Ucp1 and other thermogenic genes. Meanwhile, administration of the mice with L-Theanine increased energy expenditure. In vitro studies indicated that L-Theanine induced the development of brown-like features in adipocytes. The shRNA-mediated depletion of Prdm16 blunted the role of L-Theanine in promoting the brown-like phenotypes in adipocytes and in the iWAT of mice. L-Theanine treatment enhanced AMPKα phosphorylation both in adipocytes and in iWAT. Knockdown of AMPKα ablolished L-Theanine-induced upregulation of Prdm16 and adipocytes browning. L-Theanine increased the α-ketoglutarate (α-KG) level in adipocytes, which may increase the transcription of Prdm16 by inducing active DNA demethylation on its promoter. AMPK activation was required for L-Theanine-induced increase of α-KG and DNA demethylation on Prdm16 promoter. Moreover, intraperitoneal administration with L-Theanine ameliorated obesity, improved glucose tolerance and insulin sensitivity, and reduced plasma triglyceride, total cholesterol and free fatty acid in the high fat diet-fed mice. Our results suggest a potential role of L-Theanine in combating diet-induced obesity in mice, which may involve L-Theanine-induced browning of white adipose tissue.


2007 ◽  
Vol 292 (4) ◽  
pp. E1079-E1086 ◽  
Author(s):  
John W. Bullen ◽  
Susann Bluher ◽  
Theodoros Kelesidis ◽  
Christos S. Mantzoros

Adiponectin and its receptors play an important role in energy homeostasis and insulin resistance, but their regulation remains to be fully elucidated. We hypothesized that high-fat diet would decrease adiponectin but increase adiponectin receptor (AdipoR1 and AdipoR2) expression in diet-induced obesity (DIO)-prone C57BL/6J and DIO-resistant A/J mice. We found that circulating adiponectin and adiponectin expression in white adipose tissue are higher at baseline in C57BL/6J mice compared with A/J mice. Circulating adiponectin increases at 10 wk but decreases at 18 wk in response to advancing age and high-fat feeding. However, adiponectin levels corrected for visceral fat mass and adiponectin mRNA expression in WAT are affected by high-fat feeding only, with both being decreased after 10 wk in C57BL/6J mice. Muscle AdipoR1 expression in both C57BL/6J and A/J mice and liver adipoR1 expression in C57BL/6J mice increase at 18 wk of age. High-fat feeding increases both AdipoR1 and AdipoR2 expression in liver in both strains of mice and increases muscle AdipoR1 expression in C57BL/6J mice after 18 wk. Thus advanced age and high-fat feeding, both of which are factors that predispose humans to obesity and insulin resistance, are associated with decreasing adiponectin and increasing AdipoR1 and/or AdipoR2 levels.


2021 ◽  
Author(s):  
Wan-Qiu Peng ◽  
Gang Xiao ◽  
Bai-Yu Li ◽  
Ying-Ying Guo ◽  
Liang Guo ◽  
...  

L-Theanine is a nonprotein amino acid with much beneficial efficacy. We found that intraperitoneal treatment of the mice with L-Theanine(100mg/kg/day) enhanced adaptive thermogenesis and induced the browning of inguinal white adipose tissue (iWAT) with elevated expression of Prdm16, Ucp1 and other thermogenic genes. Meanwhile, administration of the mice with L-Theanine increased energy expenditure. In vitro studies indicated that L-Theanine induced the development of brown-like features in adipocytes. The shRNA-mediated depletion of Prdm16 blunted the role of L-Theanine in promoting the brown-like phenotypes in adipocytes and in the iWAT of mice. L-Theanine treatment enhanced AMPKα phosphorylation both in adipocytes and in iWAT. Knockdown of AMPKα ablolished L-Theanine-induced upregulation of Prdm16 and adipocytes browning. L-Theanine increased the α-ketoglutarate (α-KG) level in adipocytes, which may increase the transcription of Prdm16 by inducing active DNA demethylation on its promoter. AMPK activation was required for L-Theanine-induced increase of α-KG and DNA demethylation on Prdm16 promoter. Moreover, intraperitoneal administration with L-Theanine ameliorated obesity, improved glucose tolerance and insulin sensitivity, and reduced plasma triglyceride, total cholesterol and free fatty acid in the high fat diet-fed mice. Our results suggest a potential role of L-Theanine in combating diet-induced obesity in mice, which may involve L-Theanine-induced browning of white adipose tissue.


2017 ◽  
Vol 42 (4) ◽  
pp. 1514-1525 ◽  
Author(s):  
Jiacheng Zuo ◽  
Dandan Zhao ◽  
Na Yu ◽  
Xin Fang ◽  
Qianqian Mu ◽  
...  

Background/Aims: Obesity has become a major health concern with few effective medications. Cinnamaldehyde (CA) has been reported to exhibit anti-diabetic and anti-inflammatory properties. However, whether CA shows anti-obesity activity remains unknown. Therefore, the present study aimed to investigate the potential anti-obesity effects of CA on mice fed a high-fat diet (HFD) and to explore the possible mechanisms involved. Methods: Male C57BL/6J mice fed an HFD for 12 weeks were supplemented with CA (40 mg/kg/day) via gavage for an additional 8 weeks. Mice fed a standard diet were used as normal controls. Results: The results revealed that CA treatment decreased body weight, fat mass, food intake, and serum lipid, free fatty acid and leptin levels. CA administration also improved insulin sensitivity in HFD-induced obese mice. Additionally, CA inhibited the hypertrophy of adipose tissue and induced browning of white adipose tissue. Uncoupling protein 1 (UCP1) was expressed in white adipose tissue after the oral administration of CA. Furthermore, CA enhanced the expression of the peroxisome proliferator-activated receptor γ (PPARγ), PR domain-containing 16 (PRDM16) and PPARγ coactivator 1α (PGC-1α) proteins in both brown and white adipose tissues. Conclusions: The results suggest that CA exhibits therapeutic potency against obesity by inducing the browning of white adipose tissue in HFD-fed mice.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 276-LB ◽  
Author(s):  
RENATA PEREIRA ◽  
ANGELA C. OLVERA ◽  
ALEX A. MARTI ◽  
RANA HEWEZI ◽  
WILLIAM A. BUI TRAN ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Enrique Calvo ◽  
Noelia Keiran ◽  
Catalina Núñez-Roa ◽  
Elsa Maymó-Masip ◽  
Miriam Ejarque ◽  
...  

AbstractAdipose-derived mesenchymal stem cells (ASCs) are a promising option for the treatment of obesity and its metabolic co-morbidities. Despite the recent identification of brown adipose tissue (BAT) as a potential target in the management of obesity, the use of ASCs isolated from BAT as a therapy for patients with obesity has not yet been explored. Metabolic activation of BAT has been shown to have not only thermogenic effects, but it also triggers the secretion of factors that confer protection against obesity. Herein, we isolated and characterized ASCs from the visceral adipose tissue surrounding a pheochromocytoma (IB-hASCs), a model of inducible BAT in humans. We then compared the anti-obesity properties of IB-hASCs and human ASCs isolated from visceral white adipose tissue (W-hASCs) in a murine model of diet-induced obesity. We found that both ASC therapies mitigated the metabolic abnormalities of obesity to a similar extent, including reducing weight gain and improving glucose tolerance. However, infusion of IB-hASCs was superior to W-hASCs in suppressing lipogenic and inflammatory markers, as well as preserving insulin secretion. Our findings provide evidence for the metabolic benefits of visceral ASC infusion and support further studies on IB-hASCs as a therapeutic option for obesity-related comorbidities.


Diabetes ◽  
2014 ◽  
Vol 63 (7) ◽  
pp. 2415-2431 ◽  
Author(s):  
M. Alnaeeli ◽  
B. M. Raaka ◽  
O. Gavrilova ◽  
R. Teng ◽  
T. Chanturiya ◽  
...  

2016 ◽  
Vol 20 ◽  
pp. 54-67 ◽  
Author(s):  
Griselda Rabadan-Chávez ◽  
Lucia Quevedo-Corona ◽  
Angel Miliar Garcia ◽  
Elba Reyes-Maldonado ◽  
María Eugenia Jaramillo-Flores

Sign in / Sign up

Export Citation Format

Share Document