scholarly journals Erratum. A High-Fat Diet Attenuates AMPK α1 in Adipocytes to Induce Exosome Shedding and Nonalcoholic Fatty Liver Development In Vivo. Diabetes 2021;70:577–588

Diabetes ◽  
2021 ◽  
pp. db21er09b
Author(s):  
Chenghui Yan ◽  
Xiaoxiang Tian ◽  
Jiayin Li ◽  
Dan Liu ◽  
Ding Ye ◽  
...  
2020 ◽  
Author(s):  
Ada Admin ◽  
Chenghui Yan ◽  
Xiaoxiang Tian ◽  
Jiayin Li ◽  
Dan Liu ◽  
...  

Exosomes are important for intercellular communication, but the role of exosomes in the communication between adipose tissue (<a>AT</a>) and the liver remains unknown. The aim of this study is to determine the contribution of AT-derived exosomes in nonalcoholic fatty liver disease (<a>NAFLD</a>). Exosome components, liver fat content, and liver function were monitored in AT in mice fed a <a>high-fat diet </a>(<a>HFD</a>) or treated with metformin- or GW4869 and with AMP-activated protein kinase (AMPKα1)<i> </i>floxed<i> (Prkaα1</i><sup>fl/fl</sup>/WT), <a><i>Prkaα1</i><sup>-/-</sup></a>, liver tissue-specific <i>Prkaα1</i><sup>-/-</sup>, or AT-specific <i>Prkaα1</i><sup>-/-</sup> modification. In cultured adipocytes and white adipose tissue (WAT), the absence of <a><i>AMPKα1</i></a> increased exosome release and exosomal proteins by elevating <a>tumor susceptibility gene 101 (<i>TSG101</i></a>)-mediated exosome biogenesis. In adipocytes treated with palmitic acid, TSG101 facilitated scavenger receptor class B (CD36) sorting into exosomes. CD36-containing exosomes were then endocytosed by hepatocytes to induce lipid accumulation and inflammation. Consistently, an HFD induced more severe lipid accumulation and cell death in <a><i>Prkaα1</i><sup>-/-</sup> </a>and adipose tissue-specific <i>Prkaα1</i><sup>-/-</sup> mice than in WT and liver-specific <i>Prkaα1</i><sup>-/-</sup> mice. AMPK activation by metformin reduced adipocyte-mediated exosome release and mitigated fatty liver development in WT and liver specific <i>Prkaα1</i><sup>-/-</sup> mice. Moreover, administration of the exosome inhibitor GW4869 blocked exosome secretion and alleviated HFD-induced fatty livers in <i>Prkaα1</i><sup>-/-</sup> and adipocyte-specific <i>Prkaα1</i><sup>-/-</sup> mice. We conclude that HFD-mediated AMPKα1 inhibition promotes NAFLD by increasing numbers of AT C<a>D36</a>-containing exosomes.


2020 ◽  
Author(s):  
Ada Admin ◽  
Chenghui Yan ◽  
Xiaoxiang Tian ◽  
Jiayin Li ◽  
Dan Liu ◽  
...  

Exosomes are important for intercellular communication, but the role of exosomes in the communication between adipose tissue (<a>AT</a>) and the liver remains unknown. The aim of this study is to determine the contribution of AT-derived exosomes in nonalcoholic fatty liver disease (<a>NAFLD</a>). Exosome components, liver fat content, and liver function were monitored in AT in mice fed a <a>high-fat diet </a>(<a>HFD</a>) or treated with metformin- or GW4869 and with AMP-activated protein kinase (AMPKα1)<i> </i>floxed<i> (Prkaα1</i><sup>fl/fl</sup>/WT), <a><i>Prkaα1</i><sup>-/-</sup></a>, liver tissue-specific <i>Prkaα1</i><sup>-/-</sup>, or AT-specific <i>Prkaα1</i><sup>-/-</sup> modification. In cultured adipocytes and white adipose tissue (WAT), the absence of <a><i>AMPKα1</i></a> increased exosome release and exosomal proteins by elevating <a>tumor susceptibility gene 101 (<i>TSG101</i></a>)-mediated exosome biogenesis. In adipocytes treated with palmitic acid, TSG101 facilitated scavenger receptor class B (CD36) sorting into exosomes. CD36-containing exosomes were then endocytosed by hepatocytes to induce lipid accumulation and inflammation. Consistently, an HFD induced more severe lipid accumulation and cell death in <a><i>Prkaα1</i><sup>-/-</sup> </a>and adipose tissue-specific <i>Prkaα1</i><sup>-/-</sup> mice than in WT and liver-specific <i>Prkaα1</i><sup>-/-</sup> mice. AMPK activation by metformin reduced adipocyte-mediated exosome release and mitigated fatty liver development in WT and liver specific <i>Prkaα1</i><sup>-/-</sup> mice. Moreover, administration of the exosome inhibitor GW4869 blocked exosome secretion and alleviated HFD-induced fatty livers in <i>Prkaα1</i><sup>-/-</sup> and adipocyte-specific <i>Prkaα1</i><sup>-/-</sup> mice. We conclude that HFD-mediated AMPKα1 inhibition promotes NAFLD by increasing numbers of AT C<a>D36</a>-containing exosomes.


Aging ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 8960-8974
Author(s):  
Xiaoli Qian ◽  
Ting Wang ◽  
Jiahong Gong ◽  
Li Wang ◽  
Xuyan Chen ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yan Yang ◽  
Wenting Zhang ◽  
Xiaohui Wu ◽  
Jing Wu ◽  
Chengjun Sun ◽  
...  

Objective. Our recent study demonstrated that growth differentiation factor 5 (GDF5) could promote white adipose tissue thermogenesis and alleviate high-fat diet- (HFD-) induced obesity in fatty acid-binding protein 4- (Fabp4-) GDF5 transgenic mice (TG). Here, we further investigated the effects of systemic overexpression of the GDF5 gene in adipocytes HFD-induced nonalcoholic fatty liver disease (NAFLD). Methods. Fabp4-GDF5 TG mice were administered an HFD feeding. NAFLD-related indicators associated with lipid metabolism and inflammation were measured. A GDF5 lentiviral vector was constructed, and the LO2 NAFLD cell model was induced by FFA solution (oleic acid and palmitic acid). The alterations in liver function, liver lipid metabolism, and related inflammatory indicators were analyzed. Results. The liver weight was significantly reduced in the TG group, which was in accordance with the significantly downregulated expression of TNFα, MCP1, Aim2, and SREBP-1c and significantly upregulated expression of CPT-1α and ACOX2 in TG mouse livers. Compared to that of cells in the FAA-free control group, LO2 cells with in situ overexpression of GDF5 developed lipid droplets after FFA treatment; the levels of triglycerides, alanine aminotransferase (ALT), and aspartate aminotransferase (AST) were significantly increased in both the GDF5 lentivirus and control lentivirus groups compared with those of the FAA-free group. Additionally, the levels of FAS, SREBP-1, CPT-1α, and inflammation-associated genes, such as ASC and NLRC4, were unaltered despite GDF5 treatment. Conclusion. Systemic overexpression of GDF5 in adipose tissue in vivo significantly reduced HFD-induced NAFLD liver damage in mice. The overexpression of GDF5 in hepatocytes failed to improve lipid accumulation and inflammation-related reactions induced by mixed fatty acids, suggesting that the protective effect of GDF5 in NAFLD was mainly due to the reduction in adipose tissue and improvements in metabolism. Hence, our study suggests that the management of NAFLD should be targeted to reduce the overall amount of body fat and improve metabolic status before the progression to nonalcoholic steatohepatitis occurs.


Sign in / Sign up

Export Citation Format

Share Document