scholarly journals Plasma Fatty Acid-Binding Protein 4, Nonesterified Fatty Acids, and Incident Diabetes in Older Adults

Diabetes Care ◽  
2012 ◽  
Vol 35 (8) ◽  
pp. 1701-1707 ◽  
Author(s):  
L. Djousse ◽  
O. Khawaja ◽  
T. M. Bartz ◽  
M. L. Biggs ◽  
J. H. Ix ◽  
...  
2017 ◽  
Vol 28 (3) ◽  
pp. 767-774 ◽  
Author(s):  
Justyna K. Witczak ◽  
Thinzar Min ◽  
Sarah L. Prior ◽  
Jeffrey W. Stephens ◽  
Philip E. James ◽  
...  

1996 ◽  
Vol 271 (1) ◽  
pp. G113-G120 ◽  
Author(s):  
B. A. Luxon

Male livers, containing lesser amounts of fatty acid binding protein (FABP), utilize fatty acids more slowly than female livers. Conventional wisdom dictates that FABP stimulates fatty acid use by increasing cytoplasmic transport rates. Previously, we showed that the cytoplasmic diffusion of a fatty acid analogue [12-N-methyl-7-nitrobenzo-2-oxa-1,3-diazol-amino stearate (NBD-stearate)] is faster in female hepatocytes, paralleling the larger amounts of FABP. Sex differences in other cytoplasmic factors could also lead to faster diffusion, independent of FABP levels. The aim of this study was to determine the effect of inhibition of fatty acid binding to FABP on the directly measured intracellular transport rate of NBD-stearate. The binding of NBD-stearate to FABP was reduced by incubating hepatocytes isolated from male and female rats with alpha-bromo-palmitate (0-1,500 microM), a modified long-chain fatty acid that binds to FABP. The inhibition by alpha-bromo-palmitate on NBD-stearate binding to FABP was measured with the use of centrifugation to separate cytosol from cytoplasmic membranes. Laser photobleaching (fluorescence recovery after photobleaching) was used to measure the cytoplasmic diffusion of NBD-stearate in hepatocytes. Alpha-Bromo-palmitate incubation reduced NBD-stearate binding to FABP in a dose-dependent manner. The measured diffusion rate was also reduced in proportion to the degree of binding inhibition. We conclude that cytoplasmic transport of NBD-stearate is modulated by binding to soluble proteins like FABP. FABP enhances diffusive transport by reducing binding to immobile cytosolic membranes.


PLoS ONE ◽  
2019 ◽  
Vol 14 (12) ◽  
pp. e0226374
Author(s):  
Shigeharu Numao ◽  
Yoshinori Nagasawa ◽  
Naomi Goromaru ◽  
Shunichi Tamaki

Sign in / Sign up

Export Citation Format

Share Document