In Vivo Insulin Resistance Induced by Amylin Primarily Through Inhibition of Insulin-Stimulated Glycogen Synthesis in Skeletal Muscle

Diabetes ◽  
1991 ◽  
Vol 40 (5) ◽  
pp. 568-573 ◽  
Author(s):  
S. Frontoni ◽  
S. B. Choi ◽  
D. Banduch ◽  
L. Rossetti
2008 ◽  
Vol 294 (1) ◽  
pp. E28-E35 ◽  
Author(s):  
Michale Bouskila ◽  
Michael F. Hirshman ◽  
Jørgen Jensen ◽  
Laurie J. Goodyear ◽  
Kei Sakamoto

Insulin promotes dephosphorylation and activation of glycogen synthase (GS) by inactivating glycogen synthase kinase (GSK) 3 through phosphorylation. Insulin also promotes glucose uptake and glucose 6-phosphate (G-6- P) production, which allosterically activates GS. The relative importance of these two regulatory mechanisms in the activation of GS in vivo is unknown. The aim of this study was to investigate if dephosphorylation of GS mediated via GSK3 is required for normal glycogen synthesis in skeletal muscle with insulin. We employed GSK3 knockin mice in which wild-type GSK3α and -β genes are replaced with mutant forms (GSK3α/βS21A/S21A/S9A/S9A), which are nonresponsive to insulin. Although insulin failed to promote dephosphorylation and activation of GS in GSK3α/βS21A/S21A/S9A/S9Amice, glycogen content in different muscles from these mice was similar compared with wild-type mice. Basal and epinephrine-stimulated activity of muscle glycogen phosphorylase was comparable between wild-type and GSK3 knockin mice. Incubation of isolated soleus muscle in Krebs buffer containing 5.5 mM glucose in the presence or absence of insulin revealed that the levels of G-6- P, the rate of [14C]glucose incorporation into glycogen, and an increase in total glycogen content were similar between wild-type and GSK3 knockin mice. Injection of glucose containing 2-deoxy-[3H]glucose and [14C]glucose also resulted in similar rates of muscle glucose uptake and glycogen synthesis in vivo between wild-type and GSK3 knockin mice. These results suggest that insulin-mediated inhibition of GSK3 is not a rate-limiting step in muscle glycogen synthesis in mice. This suggests that allosteric regulation of GS by G-6- P may play a key role in insulin-stimulated muscle glycogen synthesis in vivo.


1989 ◽  
Vol 257 (3) ◽  
pp. E418-E425 ◽  
Author(s):  
M. O. Sowell ◽  
S. L. Dutton ◽  
M. G. Buse

Denervation (24 h) of skeletal muscle causes severe postreceptor insulin resistance of glucose transport and glycogen synthesis that is demonstrable in isolated muscles after short (30 min) preincubations. After longer preincubations (2-4 h), the insulin response of glucose transport increased to normal, whereas glycogen synthesis remained insulin resistant. Basal and insulin-stimulated amino acid transport were significantly lower in denervated muscles than in controls after short or long incubations, although the percentage stimulation of transport by insulin was not significantly different. The development of glucose transport insulin resistance after denervation was not attributable to increased sensitivity to glucocorticoids or adenosine. The selective in vitro reversal of glucose transport insulin resistance was not dependent on medium composition, did not require protein or prostaglandin synthesis, and could not be attributed to release of a positive regulator into the medium. The data suggest 1) the insulin receptor in muscle stimulates glucose transport by a signaling pathway that is not shared by other insulin-sensitive effector systems, and 2) denervation may affect insulin receptor signal transduction at more than one site.


1997 ◽  
Vol 272 (2) ◽  
pp. E288-E296 ◽  
Author(s):  
J. K. Kim ◽  
J. H. Youn

To determine whether an impairment of intracellular glucose metabolism causes insulin resistance, we examined the effects of suppression of glycolysis or glycogen synthesis on whole body and skeletal muscle insulin-stimulated glucose uptake during 450-min hyperinsulinemic euglycemic clamps in conscious rats. After the initial 150 min to attain steady-state insulin action, animals received an additional infusion of saline, Intralipid and heparin (to suppress glycolysis), or amylin (to suppress glycogen synthesis) for up to 300 min. Insulin-stimulated whole body glucose fluxes were constant with saline infusion (n = 7). In contrast, Intralipid infusion (n = 7) suppressed glycolysis by approximately 32%, and amylin infusion (n = 7) suppressed glycogen synthesis by approximately 45% within 30 min after the start of the infusions (P < 0.05). The suppression of metabolic fluxes increased muscle glucose 6-phosphate levels (P < 0.05), but this did not immediately affect insulin-stimulated glucose uptake due to compensatory increases in other metabolic fluxes. Insulin-stimulated whole body glucose uptake started to decrease at approximately 60 min and was significantly decreased by approximately 30% at the end of clamps (P < 0.05). Similar patterns of changes in insulin-stimulated glucose fluxes were observed in individual skeletal muscles. Thus the suppression of intracellular glucose metabolism caused decreases in insulin-stimulated glucose uptake through a cellular adaptive mechanism in response to a prolonged elevation of glucose 6-phosphate rather than the classic mechanism involving glucose 6-phosphate inhibition of hexokinase.


2007 ◽  
Vol 293 (5) ◽  
pp. E1358-E1364 ◽  
Author(s):  
Andrew J. Hoy ◽  
Clinton R. Bruce ◽  
Anna Cederberg ◽  
Nigel Turner ◽  
David E. James ◽  
...  

Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471–E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (∼10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3β] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A443-A444
Author(s):  
Alba Moreno-Asso ◽  
Luke C McIlvenna ◽  
Rhiannon K Patten ◽  
Andrew J McAinch ◽  
Raymond J Rodgers ◽  
...  

Abstract Polycystic ovary syndrome (PCOS) is the most common female endocrinopathy affecting metabolic and reproductive health of 8–13% of reproductive-age women. Insulin resistance (IR) appears to underpin the pathophysiology of PCOS and is present in approximately 38–95% of women with PCOS. This underlying IR has been identified as unique from, but synergistic with, obesity-induced IR (1). Skeletal muscle accounts for up to 85% of whole-body insulin-stimulated glucose uptake; however, in PCOS this is reduced by about 27% when assessed by a euglycaemic-hyperinsulinaemic clamp (2). Interestingly, this reduced insulin-stimulated glucose uptake observed in skeletal muscle tissue is not retained in cultured myotubes (3), suggesting that in vivo environmental factors may play a role in this PCOS-specific IR. Yet, the molecular mechanisms regulating IR remain unclear (4). A potential environmental mechanism contributing to the development of peripheral IR may be the extracellular matrix remodelling and aberrant transforming growth factor beta (TGFβ) signalling. Previous work demonstrated that TGFβ superfamily ligands are involved in the increased collagen deposition and fibrotic tissue in the ovaries, and suggested that these ligands may be involved in the metabolic morbidity associated with PCOS (5). In this study, we investigated the effects of TGFβ1 (1, 5 ng/ml), and the Anti-Müllerian hormone (AMH; 5, 10, 30 ng/ml), a TGFβ superfamily ligand elevated in women with PCOS, as causal factors of IR in cultured myotubes from women with PCOS (n=5) and healthy controls (n=5). TGFβ1 did not have a significant effect on insulin signalling but induced expression of some ECM related genes and proteins, and increased glucose uptake via Smad2/3 signalling in myotubes from both groups. Conversely, AMH did not appear to activate the TGFβ/Smad signalling pathway and had no significant impact on insulin signalling or glucose uptake in any of the groups. In conclusion, these findings suggest that TGFβ1, but not AMH, may play a role in skeletal muscle ECM remodelling/fibrosis and glucose metabolism in PCOS but does not have a direct effect on insulin signalling pathway. Further research is required to elucidate its contribution to the development of in vivo skeletal muscle IR and broader impact in this syndrome. References: (1) Stepto et al., Hum Reprod 2013 Mar;28(3):777–784. (2) Cassar et al., Hum Reprod 2016 Nov;31(11):2619–2631. (3) Corbould et al., Am J Physiol-Endoc 2005 May;88(5):E1047-54. (4) Stepto et al., J Clin Endocrinol Metab, 2019 Nov 1;104(11):5372–5381. (5) Raja-Khan et al., Reprod Sci 2014 Jan;21(1):20–31.


2021 ◽  
Vol 12 ◽  
Author(s):  
Evelin Major ◽  
Ferenc Győry ◽  
Dániel Horváth ◽  
Ilka Keller ◽  
István Tamás ◽  
...  

Hyperthyroidism triggers a glycolytic shift in skeletal muscle (SKM) by altering the expression of metabolic proteins, which is often accompanied by peripheral insulin resistance. Our previous results show that smoothelin-like protein 1 (SMTNL1), a transcriptional co-regulator, promotes insulin sensitivity in SKM. Our aim was to elucidate the role of SMTNL1 in SKM under physiological and pathological 3,3′,5-Triiodo-L-thyronine (T3) concentrations. Human hyper- and euthyroid SKM biopsies were used for microarray analysis and proteome profiler arrays. Expression of genes related to energy production, nucleic acid- and lipid metabolism was changed significantly in hyperthyroid samples. The phosphorylation levels and activity of AMPKα2 and JNK were increased by 15% and 23%, respectively, in the hyperthyroid samples compared to control. Moreover, SMTNL1 expression showed a 6-fold decrease in the hyperthyroid samples and in T3-treated C2C12 cells. Physiological and supraphysiological concentrations of T3 were applied on differentiated C2C12 cells upon SMTNL1 overexpression to assess the activity and expression level of the elements of thyroid hormone signaling, insulin signaling and glucose metabolism. Our results demonstrate that SMTNL1 selectively regulated TRα expression. Overexpression of SMTNL1 induced insulin sensitivity through the inhibition of JNK activity by 40% and hampered the non-genomic effects of T3 by decreasing the activity of ERK1/2 through PKCδ. SMTNL1 overexpression reduced IRS1 Ser307 and Ser612 phosphorylation by 52% and 53%, respectively, in hyperthyroid model to restore the normal responsiveness of glucose transport to insulin. SMTNL1 regulated glucose phosphorylation and balances glycolysis and glycogen synthesis via the downregulation of hexokinase II by 1.3-fold. Additionally, mitochondrial respiration and glycolysis were measured by SeaHorse analysis to determine cellular metabolic function/phenotype of our model system in real-time. T3 overload strongly increased the rate of acidification and a shift to glycolysis, while SMTNL1 overexpression antagonizes the T3 effects. These lines of evidence suggest that SMTNL1 potentially prevents hyperthyroidism-induced changes in SKM, and it holds great promise as a novel therapeutic target in insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document