Diminished specific activity of cytosolic protein kinase C in sciatic nerve of streptozocin-induced diabetic rats and its correction by dietary myo-inositol

Diabetes ◽  
1991 ◽  
Vol 40 (11) ◽  
pp. 1545-1554 ◽  
Author(s):  
J. Kim ◽  
E. H. Rushovich ◽  
T. P. Thomas ◽  
T. Ueda ◽  
B. W. Agranoff ◽  
...  
Diabetes ◽  
1991 ◽  
Vol 40 (11) ◽  
pp. 1545-1554 ◽  
Author(s):  
J. Kim ◽  
E. H. Rushovich ◽  
T. P. Thomas ◽  
T. Ueda ◽  
B. W. Agranoff ◽  
...  

1989 ◽  
Vol 260 (2) ◽  
pp. 499-507 ◽  
Author(s):  
G E Kass ◽  
S K Duddy ◽  
S Orrenius

The effects of quinone-generated active oxygen species on rat hepatocyte protein kinase C were investigated. The specific activity of cytosolic protein kinase C was increased 2-3-fold in hepatocytes incubated with the redox-cycling quinones, menadione, duroquinone or 2,3-dimethoxy-1,4-naphthoquinone, without alterations in particulate protein kinase C specific activity or Ca2+- and lipid-independent kinase activities. Redox-cycling quinones did not stimulate translocation of protein kinase C; however, activated protein kinase C was redistributed from cytosol to the particulate fraction when quinone-treated hepatocytes were exposed to 12-O-tetradecanoylphorbol 13-acetate (TPA). Quinone treatment did not alter cytosolic phorbol 12,13-dibutyrate (PDBu) binding capacity, and the cytosol of both control and quinone-treated hepatocytes exhibited a Kd for PDBu binding of 2 nM. Quinone-mediated activation of cytosolic protein kinase C was reversed by incubation with 10 mM-beta-mercaptoethanol, dithiothreitol or GSH, at 4 degrees C for 24 h. Furthermore, protein kinase C specific activity in control cytosol incubated in air increased by over 100% within 3 h; this increase was reversed by thiol-reducing agents. Similarly, incubation of partially-purified rat brain protein kinase C in air, or with low concentrations of GSSG in the presence of GSH, resulted in a 2-2.5-fold increase in Ca2+- and lipid-dependent kinase activity. In contrast with the effects of the redox-cycling quinones, when hepatocytes were treated with the thiol agents N-ethylmaleimide (NEM), p-benzoquinone (pBQ) or p-chloromercuribenzoic acid (pCMB), the cytosolic Ca2+- and lipid-dependent kinase activity was significantly inhibited, but the particulate-associated protein kinase C activity was unaffected. The Ca2+- and lipid-independent kinase activity of both the cytosolic and particulate fractions was significantly stimulated by NEM, but was unaffected by pBQ and pCMB. These results show that hepatocyte cytosolic protein kinase C is activated to a high-Vmax form by quinone-generated active oxygen species, and this effect is due to a reduction-sensitive modification of the thiol/disulphide status of protein kinase C.


1995 ◽  
Vol 269 (2) ◽  
pp. E239-E246 ◽  
Author(s):  
M. Kunisaki ◽  
S. E. Bursell ◽  
A. C. Clermont ◽  
H. Ishii ◽  
L. M. Ballas ◽  
...  

We have characterized effects of d-alpha-tocopherol (vitamin E) on activation of protein kinase C (PKC) and diacylglycerol (DAG) levels in retinal tissues of diabetic rats and correlated its effects to diabetes-induced changes in retinal hemodynamics. Membrane PKC specific activities were increased by 71% in streptozocin-induced diabetic rats compared with controls (P < 0.05). Western blot analysis showed that membrane PKC-beta II was increased by 133 +/- 5% (P < 0.05). Injection of d-alpha-tocopherol (40 mg/kg ip) every other day prevented the increases in membrane PKC specific activity and PKC-beta II protein by immunoblots. Diabetes-induced increases in DAG levels were also normalized by d-alpha-tocopherol treatment of 2 wk duration. Physiologically, angiographic abnormalities of retinal hemodynamics based on computerized video-based fluorescein angiography and associated with increases of DAG and membranous PKC levels were also prevented by d-alpha-tocopherol treatment in diabetic rats. The effect of d-alpha-tocopherol on retinal vascular cells was also studied. Exposure of retinal endothelial cells to 22 mM glucose for 3 days increased total DAG and [3H]palmitate-labeled DAG levels by 35 +/- 8 and 50 +/- 8% (P < 0.05), respectively, compared with exposure to 5.5 mM glucose. The presence of d-alpha-tocopherol (50 micrograms/ml) prevented the increases in total DAG and [3H]palmitate-labeled DAG levels in cells exposed to 22 mM glucose. These findings suggested that treatment with d-alpha-tocopherol can prevent diabetes-induced abnormalities in rat retinal blood flow.(ABSTRACT TRUNCATED AT 250 WORDS)


2002 ◽  
Vol 62 (2) ◽  
pp. 686-696 ◽  
Author(s):  
Isabelle Borghini ◽  
Aldonza Ania-Lahuerta ◽  
Romano Regazzi ◽  
Giovanna Ferrari ◽  
Asllan Gjinovci ◽  
...  

2000 ◽  
Vol 278 (4) ◽  
pp. F603-F612 ◽  
Author(s):  
Farhad Amiri ◽  
Raul Garcia

It has been shown that glomerular ANG II receptors are downregulated and protein kinase C (PKC) activity is enhanced in diabetes mellitus. Therefore, we investigated glomerular and preglomerular vascular ANG II receptors and PKC isoform regulation in streptozotocin (STZ)-diabetic rats treated with insulin and/or captopril. Diabetic rats were prepared by injecting STZ (60 mg/kg). Those that developed diabetes after 48 h were treated with low or high doses of insulin, or with a low dose of insulin as well as captopril, and killed 14 days later. Their glomeruli and preglomerular vessels were purified, competitive binding studies were performed by using the ANG II antagonists losartan and PD-123319, and PKC analysis was carried out by Western blotting. Competitive binding studies showed that the AT1 receptor was the only ANG II receptor detected on both glomeruli and preglomerular vessels of all groups. Preglomerular vascular AT1 receptor density (Bmax) was significantly upregulated in low insulin-treated STZ rats, whereas glomerular AT1 Bmax was downregulated. Furthermore, both the captopril- and high insulin-treated groups had less glomerulosclerosis and vascular damage than the low insulin-treated group. PKCα, PKCδ, PKCε, and PKCμ isoforms found in preglomerular vessels were upregulated by captopril and high insulin doses, respectively, whereas no such regulation occurred in glomeruli. We conclude that in STZ-diabetic rats ANG II receptors and PKC isoforms on preglomerular vessels and glomeruli are differentially regulated by treatment with insulin and/or captopril.


Toxicon ◽  
1990 ◽  
Vol 28 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Robert V. Considine ◽  
John K. Bielicki ◽  
Lance L. Simpson ◽  
Joseph R. Sherwin

1998 ◽  
Vol 5 ◽  
pp. 177
Author(s):  
Amparo Martínez-Blasco ◽  
Francisco Bosch-Morell ◽  
Nuria Marín ◽  
Belén Romero ◽  
Carlos Trenor ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document